Spaces:
Runtime error
Runtime error
File size: 934 Bytes
0b4887e cc2b268 0b4887e 4882a84 0b4887e d637c63 fac5871 d637c63 0a44d2b d637c63 b1e1b89 f9e4006 6592d98 d637c63 a071b80 d637c63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from langchain_core.messages import AIMessage
MODEL_REPO = "Rahul-8799/project_manager_gemma3"
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_REPO,
torch_dtype=torch.float16,
device_map="auto"
)
def run(state: dict) -> dict:
"""Creates project plan based on product requirements."""
messages = state["messages"]
prompt = messages[-1].content
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
output_ids = model.generate(input_ids, max_new_tokens=3000)
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return {
"messages": [AIMessage(content=output)],
"chat_log": state["chat_log"] + [{"role": "Project Manager", "content": output}],
"proj_output": output,
} |