File size: 5,008 Bytes
2c984f3
 
 
 
 
 
 
 
 
 
 
 
22d45ef
 
2c984f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import time
from typing import List, Tuple, Optional

import google.generativeai as genai
import gradio as gr
from PIL import Image

print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")

TITLE = """<h1 align="center">🕹️ Google Gemini Chatbot 🔥</h1>"""
SUBTITLE = """<h2 align="center">🎨Creat with Multimodal Gemini</h2>"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <a href="https://huggingface.co/spaces/ameerazam08/Gemini-All-in-One?logs=container&duplicate=true">
        <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
    </a>
    <span>Duplicate the Space and run securely with your 
        <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
    </span>
</div>
"""

IMAGE_WIDTH = 512

def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None

def preprocess_image(image: Image.Image) -> Image.Image:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))

def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
    return "", chatbot + [[text_prompt, None]]

def bot(
    google_key: str,
    model_name: str,
    image_prompt: Optional[Image.Image],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: List[Tuple[str, str]]
):
    google_key = google_key or GOOGLE_API_KEY
    if not google_key:
        raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")

    text_prompt = chatbot[-1][0]
    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences),
        top_k=top_k,
        top_p=top_p
    )

    model = genai.GenerativeModel(model_name if image_prompt is None else 'gemini-pro-vision')
    inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)]
    
    response = model.generate_content(inputs, stream=True, generation_config=generation_config)
    response.resolve()

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            chatbot[-1][1] += chunk.text[i:i + 10]
            time.sleep(0.01)
            yield chatbot

google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    type="password",
    placeholder="...",
    visible=GOOGLE_API_KEY is None
)

image_prompt_component = gr.Image(type="pil", label="Image")
model_selection = gr.Dropdown(["gemini-1.0-pro", "gemini-pro-vision", "gemini-1.5-flash-latest", "gemini-1.5-pro-latest", "gemini-1.0-pro-001"], label="Select Gemini Model", value="gemini-1.0-pro")
chatbot_component = gr.Chatbot(label='Gemini', bubble_full_width=False)
text_prompt_component = gr.Textbox(placeholder="Hi there!", label="Ask me anything and press Enter")
run_button_component = gr.Button("Run")
temperature_component = gr.Slider(minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature")
max_output_tokens_component = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Token limit")
stop_sequences_component = gr.Textbox(label="Add stop sequence", placeholder="STOP, END")
top_k_component = gr.Slider(minimum=1, maximum=40, value=32, step=1, label="Top-K")
top_p_component = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top-P")

user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [google_key_component, model_selection, image_prompt_component, temperature_component, max_output_tokens_component, stop_sequences_component, top_k_component, top_p_component, chatbot_component]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(DUPLICATE)
    with gr.Column():
        google_key_component.render()
        with gr.Row():
            image_prompt_component.render()
            model_selection.render()
            chatbot_component.render()
        text_prompt_component.render()
        run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False).then(fn=bot, inputs=bot_inputs, outputs=[chatbot_component])
    text_prompt_component.submit(fn=user, inputs=user_inputs, outputs=[text_prompt_component, chatbot_component], queue=False).then(fn=bot, inputs=bot_inputs, outputs=[chatbot_component])

demo.launch()