File size: 6,773 Bytes
1720c98 ff899f4 1720c98 9cd7388 1720c98 2e70119 1720c98 ff899f4 1720c98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer, util
import numpy as np
import faiss
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Placeholder for the app's state
class MyApp:
def __init__(self) -> None:
self.documents = []
self.embeddings = None
self.index = None
self.load_pdf("DB.pdf")
self.build_vector_db()
def load_pdf(self, file_path: str) -> None:
"""Extracts text from a PDF file and stores it in the app's documents."""
doc = fitz.open(file_path)
self.documents = []
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
self.documents.append({"page": page_num + 1, "content": text})
print("PDF processed successfully!")
def build_vector_db(self) -> None:
"""Builds a vector database using the content of the PDF."""
model = SentenceTransformer('all-MiniLM-L6-v2')
self.embeddings = model.encode([doc["content"] for doc in self.documents])
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
self.index.add(np.array(self.embeddings))
print("Vector database built successfully!")
def search_documents(self, query: str, k: int = 3) -> List[str]:
"""Searches for relevant documents using vector similarity."""
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = model.encode([query])
D, I = self.index.search(np.array(query_embedding), k)
results = [self.documents[i]["content"] for i in I[0]]
return results if results else ["No relevant documents found."]
app = MyApp()
def preprocess_input(user_input: str) -> str:
"""Preprocesses user input to enhance it for better context."""
if "therapy" or "excercise" in user_input.lower():
return "I am looking for guidance on therapy. Can you help me with some exercises or techniques to manage my stress and emotions?"
# Add more rules as needed
return user_input
def preprocess_response(response: str) -> str:
"""Preprocesses the response to make it more polished."""
response = response.strip()
response = response.replace("\n\n", "\n")
response = response.replace(" ,", ",")
response = response.replace(" .", ".")
response = " ".join(response.split())
return response
def shorten_response(response: str) -> str:
"""Uses the Zephyr model to shorten and refine the response."""
messages = [{"role": "system", "content": "Shorten and refine this response in bullet list."}, {"role": "user", "content": response}]
result = client.chat_completion(messages, max_tokens=256, temperature=0.5, top_p=0.9)
return result.choices[0].message['content'].strip()
def respond(message: str, history: List[Tuple[str, str]]):
system_message = "You are a concisely speaking empathetic Dialectical Behaviour Therapist assistant. You politely guide users through DBT exercises based on the given DBT book. You must say one thing at a time and ask follow-up questions to continue the chat."
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Preprocess user input
preprocessed_message = preprocess_input(message)
messages.append({"role": "user", "content": preprocessed_message})
# RAG - Retrieve relevant documents
retrieved_docs = app.search_documents(preprocessed_message)
context = "\n".join(retrieved_docs)
if context.strip():
messages.append({"role": "system", "content": "Relevant documents: " + context})
response = client.chat_completion(messages, max_tokens=1024, temperature=0.7, top_p=0.9)
response_content = "".join([choice.message['content'] for choice in response.choices if 'content' in choice.message])
polished_response = preprocess_response(response_content)
shortened_response = shorten_response(polished_response)
history.append((message, shortened_response))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# 🧘♀️ **Dialectical Behaviour Therapy**")
gr.Markdown(
"‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
"We are not medical practitioners, and the use of this chatbot is at your own responsibility."
)
chatbot = gr.Chatbot()
with gr.Row():
txt_input = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
lines=1
)
submit_btn = gr.Button("Submit", scale=1)
refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
example_questions = [
["What are some techniques to handle distressing situations?"],
["How does DBT help with emotional regulation?"],
["Can you give me an example of an interpersonal effectiveness skill?"],
["I want to practice mindfulness. Can you help me?"],
["I want to practice distraction techniques. What can I do?"],
["How do I plan self-accommodation?"],
["What are some distress tolerance skills?"],
["Can you help me with emotional regulation techniques?"],
["How can I improve my interpersonal effectiveness?"],
["What are some ways to cope with stress using DBT?"],
["Can you guide me through a grounding exercise?"],
["How do I use DBT skills to handle intense emotions?"],
["What are some self-soothing techniques I can practice?"],
["How can I create a sensory-friendly safe space?"],
["Can you help me create a personal crisis plan?"],
["What are some affirmations for neurodivergent individuals?"],
["How can I manage rejection sensitive dysphoria?"],
["Can you guide me through observing with my senses?"],
["What are some accessible mindfulness exercises?"],
["How do I engage my wise mind?"],
["What are some values that I can identify with?"],
["How can I practice mindful appreciation?"],
["What is the STOP skill in distress tolerance?"],
["How can I use the TIPP skill to manage distress?"],
["What are some tips for managing meltdowns?"],
["Can you provide a list of stims that I can use?"],
["How do I improve my environment to reduce distress?"]
]
gr.Examples(examples=example_questions, inputs=[txt_input])
submit_btn.click(respond, [txt_input, chatbot], [chatbot, txt_input])
refresh_btn.click(lambda: [], None, chatbot)
if __name__ == "__main__":
demo.launch()
|