File size: 5,544 Bytes
1391e84 02a466f 1391e84 02a466f 1391e84 02a466f 1391e84 02a466f 1391e84 02a466f 1391e84 64864b8 1391e84 ddf2da0 e14b6d7 1391e84 64864b8 1391e84 64864b8 1391e84 64864b8 1391e84 64864b8 1391e84 64864b8 1391e84 64864b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
"""
Based on an implementation by Sunil Kumar Dash:
MIT License
Copyright (c) 2023 Sunil Kumar Dash
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from typing import Any
import gradio as gr
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyMuPDFLoader
import fitz
from PIL import Image
import os
import re
import openai
openai.api_key = "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"
def add_text(history, text: str):
if not text:
raise gr.Error("Enter text")
history = history + [(text, "")]
return history
class MyApp:
def __init__(self) -> None:
self.OPENAI_API_KEY: str = openai.api_key
self.chain = None
self.chat_history: list = []
self.N: int = 0
self.count: int = 0
def __call__(self, file: str) -> Any:
if self.count == 0:
self.chain = self.build_chain(file)
self.count += 1
return self.chain
def process_file(self, file: str):
loader = PyMuPDFLoader(file.name)
documents = loader.load()
pattern = r"/([^/]+)$"
match = re.search(pattern, file.name)
try:
file_name = match.group(1)
except:
file_name = os.path.basename(file)
return documents, file_name
def build_chain(self, file: str):
documents, file_name = self.process_file(file)
# Load embeddings model
embeddings = OpenAIEmbeddings(openai_api_key=self.OPENAI_API_KEY)
pdfsearch = Chroma.from_documents(
documents,
embeddings,
collection_name=file_name,
)
chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0.0, openai_api_key=self.OPENAI_API_KEY),
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True,
)
return chain
def get_response(history, query, file):
if not file:
raise gr.Error(message="Upload a PDF")
chain = app(file)
result = chain(
{"question": query, "chat_history": app.chat_history}, return_only_outputs=True
)
app.chat_history += [(query, result["answer"])]
app.N = list(result["source_documents"][0])[1][1]["page"]
for char in result["answer"]:
history[-1][-1] += char
yield history, ""
def render_file(file):
doc = fitz.open(file.name)
page = doc[app.N]
# Render the page as a PNG image with a resolution of 150 DPI
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image
def purge_chat_and_render_first(file):
print("purge_chat_and_render_first")
# Purges the previous chat session so that the bot has no concept of previous documents
app.chat_history = []
app.count = 0
# Use PyMuPDF to render the first page of the uploaded document
doc = fitz.open(file.name)
page = doc[0]
# Render the page as a PNG image with a resolution of 150 DPI
pix = page.get_pixmap(dpi=150)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
return image, []
app = MyApp()
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
chatbot = gr.Chatbot(value=[], elem_id="chatbot")
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press submit",
scale=2
)
submit_btn = gr.Button("Submit", scale=1)
with gr.Column(scale=1):
with gr.Row():
show_img = gr.Image(label="Upload PDF")
with gr.Row():
btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
btn.upload(
fn=purge_chat_and_render_first,
inputs=[btn],
outputs=[show_img, chatbot],
)
submit_btn.click(
fn=add_text,
inputs=[chatbot, txt],
outputs=[
chatbot,
],
queue=False,
).success(
fn=get_response, inputs=[chatbot, txt, btn], outputs=[chatbot, txt]
).success(
fn=render_file, inputs=[btn], outputs=[show_img]
)
demo.queue()
demo.launch()
|