File size: 22,906 Bytes
77f6ae5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import requests
import pandas as pd
import numpy as np
import pickle as pk
import streamlit as st
import time
import Weather_app as wa
import warnings
warnings.filterwarnings("ignore")
data = pd.read_csv("Crop_recommendation.csv")
data_new = data.copy(deep = True)
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data["Crop"] = le.fit_transform(data["label"])
data.drop(columns = ["label"], inplace = True)
@st.cache_resource
def recmod():
return pk.load(open('crop_recommendation.pickle','rb'))
recommendation_model = recmod()
def crop_encoding(Predicted_value):
Predicted_value = (data_new[data.Crop == Predicted_value]["label"]).to_list()[0]
return Predicted_value
def Crop_recommendation_function(crop_data_input):
crop_data_asarray = np.asarray(crop_data_input)
crop_data_reshaped = crop_data_asarray.reshape(1, -1)
crop_recommended = recommendation_model.predict(crop_data_reshaped)[0] # Extract the result
crop = crop_encoding(crop_recommended)
return crop
def Crop_recommendation_function2(input_data_speed):
# crop_data_asarray = np.array(input_data_speed).reshape(1, -1)
# Make predictions using the loaded model
# predictions = loaded_data.predict(crop_data_asarray)[0]
# modaa = pk.load(open('Soli_to_recommandation_model_Raghuu.pkl', 'rb'))
with open('Soli_to_recommandation_model_Raghuu.pkl', 'rb') as file:
loaded_model = pk.load(file)
# input_data = np.array(input_data_speed).reshape(1, -1)
mapp = {'Pomegranate': 10,
'Banana': 2,
'Mango': 6,
'Grapes': 4,
'Peach': 9,
'Black Berry': 3,
'Apple': 0,
'Orange': 7,
'Papaya': 8,
'Guava': 5,
'Apricot': 1}
criop =loaded_model.predict(input_data_speed)[0]
predicted_label = [key for key, value in mapp.items() if value == criop][0]
return predicted_label
# def get_weather_details(city_name):
# base_url = "https://api.openweathermap.org/data/2.5/weather"
# params = {
# 'q': city_name,
# 'appid': "d73ec4f18aca81c32b1836a8ac2506e0"
# }
# try:
# response = requests.get(base_url, params=params)
# data = response.json()
# # Check if the request was successful
# if response.status_code == 200:
# # Extract weather details
# weather_details = {
# 'temperature': data['main']['temp'],
# 'humidity': data['main']['humidity']
# }
# return weather_details
# else:
# st.write("Error {}: {}".format(response.status_code, data['message']))
# return None
# except Exception as e:
# st.write("An error occurred:", e)
# return None
def run_crop_recommendation():
st.title('Crop Recommendation')
background_image = 'https://c1.wallpaperflare.com/preview/436/828/940/clouds-summer-storm-clouds-form.jpg'
html_code = f"""
<style>
body {{
background-image: url('{background_image}');
background-size: cover;
background-position: center;
background-repeat: no-repeat;
height: 100vh; /* Set the height of the background to fill the viewport */
margin: 0; /* Remove default body margin */
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}}
.stApp {{
background: none; /* Remove Streamlit app background */
}}
</style>
"""
tab1, tab2, tab3= st.tabs(['Based On Land And Water', 'Based On Fertilizers','Feedback'])
# st.title("Crop Recommendation System")
with tab1:
try:
weather_details = wa.get_weather_details(wa.city_name)
# Load the trained model
@st.cache_resource
def soli():
return pk.load(open('Soli_to_recommandation_model_Simha.pkl', 'rb'))
loaded_model = soli()
# Streamlit UI
# st.title("Crop Recommendation System")
# Input features for prediction
col1, col2 = st.columns(2)
with col1:
Soil_EC = st.selectbox(("Soil_EC Siemens per meter (S/m)"),(1,2,3,4),3)
with col2:
Water_TDS = st.selectbox(("Water_TDS"),(1,2,3,4,5,6),5)
if weather_details:
Temprature = weather_details['temperature']
Humidity = weather_details['humidity']
col3,col4 = st.columns(2)
with col3:
Ph = st.number_input("acidity or alkalinity",value=8.0, min_value= 0.0, max_value= 14.0, step=0.5)
with col4:
Rain_Fall = st.number_input("Rain_Fall in (mm) ", min_value=50.0,value=100.97,max_value=500.0)
# Reshape input data for prediction
input_data = np.array([Soil_EC, Water_TDS, Temprature, Humidity, Ph, Rain_Fall]).reshape(1, -1)
# Make prediction
mapp = {'Pomegranate': 10,
'Banana': 2,
'Mango': 6,
'Grapes': 4,
'Peach': 9,
'Black Berry': 3,
'Apple': 0,
'Orange': 7,
'Papaya': 8,
'Guava': 5,
'Apricot': 1}
crop_image_urls = {'Wheat': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRIp7ucodsB63giF1CvVjBtbHf14Px83ck2hcZRUJlMxA&s',
'Rice': 'https://media.istockphoto.com/id/153737841/photo/rice.webp?b=1&s=170667a&w=0&k=20&c=SF6Ks-8AYpbPTnZlGwNCbCFUh-0m3R5sM2hl-C5r_Xc=',
'Maize (Corn)': 'https://plus.unsplash.com/premium_photo-1667047165840-803e47970128?q=80&w=1000&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8MXx8bWFpemV8ZW58MHx8MHx8fDA%3D',
'Bajra (Pearl millet)': 'https://media.istockphoto.com/id/1400438871/photo/pear-millet-background.jpg?s=612x612&w=0&k=20&c=0GlBeceuX9Q_AZ0-CH57_A5s7_tD769N2f_jrbNcbrw=',
'Jowar (Sorghum)': 'https://media.istockphoto.com/id/1262684430/photo/closeup-view-of-a-white-millet-jowar.jpg?s=612x612&w=0&k=20&c=HLyBy06EjbABKybUy1nIQTfxMLV1-s4xofGigOdd6dU=',
'Barley': 'https://www.poshtik.in/cdn/shop/products/com1807851487263barley_Poshtik_c1712f8e-6b63-4231-9596-a49ce84f26ba.png?v=1626004318',
'Gram (Chickpea)': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQHtf9ivxD23Bp_-VOY4H2tCRMC0_znhzyAEt2jfzvUlskEZcv0',
'Tur (Pigeonpea)': 'https://rukminim2.flixcart.com/image/850/1000/xif0q/plant-seed/f/l/n/25-pigeon-pea-for-planting-home-garden-farming-vegetable-kitchen-original-imaghphgmepkjqfz.jpeg?q=90',
'Moong (Green Gram)': 'https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTyIa1Wq11MaHZ_cIdArPjZSR8cnr85STU83QsjKvkI9xNdVDjJ',
'Urad (Black gram)': 'https://encrypted-tbn0.gstatic.com/licensed-image?q=tbn:ANd9GcRl-eFmBSLAHxB7U_b_SQNptQoQpi585JWgpqU0LH0jmvmrp9mESzQrL3ieox6ICl_-v7rzl38Pi7faf-4',
'Masoor (Red lentil)': 'https://www.vegrecipesofindia.com/wp-content/uploads/2022/11/masoor-dal-red-lentils.jpg',
'Groundnut (Peanut)': 'https://www.netmeds.com/images/cms/wysiwyg/blog/2019/10/Groundnut_big_2.jpg',
'Sesamum (Sesame)': 'https://encrypted-tbn0.gstatic.com/licensed-image?q=tbn:ANd9GcThAjpal-k0urS19A2NEoVW35yqF9ljlvx1d-amDokoIiHZ9-RGyUsDaiVcr7SdfwsFjP-I6U1_VYeiEc0',
'Castor seed': 'https://5.imimg.com/data5/QV/VN/MY-3966004/caster-seeds.jpg',
'Sunflower': 'https://t0.gstatic.com/licensed-image?q=tbn:ANd9GcRuCcoGrqSVqOzxFU9rHPsWKxaHpm7i_srXQPMHaVfrrDmz4eXc5PGWpQFfpAr8qaH2',
'Safflower': 'https://upload.wikimedia.org/wikipedia/commons/7/7f/Safflower.jpg',
'Sugarcane': 'https://www.saveur.com/uploads/2022/03/05/sugarcane-linda-xiao.jpg?auto=webp',
'Cotton (lint)': 'https://img2.tradewheel.com/uploads/images/products/6/0/0048590001615360690-cotton-lint.jpeg.webp',
'Jute': 'https://rukminim2.flixcart.com/image/850/1000/kuk4u4w0/rope/d/k/f/2-jute-cord-for-craft-project-natural-jute-rope-jute-thread-original-imag7nrjbkrmgbpm.jpeg?q=20',
'Potato': 'https://cdn.mos.cms.futurecdn.net/iC7HBvohbJqExqvbKcV3pP.jpg',
'Onion': 'https://familyneeds.co.in/cdn/shop/products/2_445fc9bd-1bab-4bfb-8d5d-70b692745567_600x600.jpg?v=1600812246',
'Tomato': 'https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Tomato_je.jpg/1200px-Tomato_je.jpg',
'Banana': 'https://fruitboxco.com/cdn/shop/products/asset_2_grande.jpg?v=1571839043',
'Coconut': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcS_rZgOJry6Twt8urk4C1FTo6d6tEDyiIw39w&usqp=CAU',
'Mango': "https://i.pinimg.com/474x/70/bd/5f/70bd5f8fd50d30bfcab3ac0f27ff4202.jpg",
'Orange': "https://images.unsplash.com/photo-1611080626919-7cf5a9dbab5b?q=80&w=1000&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8Mnx8b3Jhbmdlc3xlbnwwfHwwfHx8MA%3D%3D",
"Pomegranate": "https://thumbs.dreamstime.com/b/juicy-pomegranate-its-half-leaves-16537522.jpg",
"Banana": "https://media.istockphoto.com/id/173242750/photo/banana-bunch.jpg?s=612x612&w=0&k=20&c=MAc8AXVz5KxwWeEmh75WwH6j_HouRczBFAhulLAtRUU=",
"Grapes": "https://cf.ltkcdn.net/wine/images/std/165373-800x532r1-grapes.jpg",
"Peach": "https://www.shutterstock.com/image-photo/peaches-isolated-ripe-peach-half-260nw-2189388721.jpg",
"Black Berry": "https://example.com/blackberry.jpg",
"Apple": "https://images.unsplash.com/photo-1560806887-1e4cd0b6cbd6?q=80&w=1000&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxleHBsb3JlLWZlZWR8Nnx8fGVufDB8fHx8fA%3D%3D",
"Papaya": "https://media.istockphoto.com/id/864053288/photo/whole-and-half-of-ripe-papaya-fruit-with-seeds-isolated-on-white-background.jpg?s=612x612&w=0&k=20&c=hJ5DpNTt0oKjZMIHYV6gUHTntB2zIs_78dPKiuDUXgE=",
"Guava": "https://media.istockphoto.com/id/1224636159/photo/closeup-of-a-red-guava-cut-in-half-in-the-background-several-guavas-and-green-leaf.jpg?s=612x612&w=0&k=20&c=KJ9YilkRRuFh0bnw64Ol0IZDfoQF7UIxyC6dRVIjaoA=",
"Apricot": "https://www.shutterstock.com/image-photo/apricot-isolated-apricots-on-white-600nw-1963600408.jpg",
"Kidneybeans": "https://www.healthifyme.com/blog/wp-content/uploads/2022/01/807716893sst1641271427-scaled.jpg",
"Chickpea": "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQHtf9ivxD23Bp_-VOY4H2tCRMC0_znhzyAEt2jfzvUlskEZcv0"}
def get_crop_image_url(crop_name):
return crop_image_urls.get(crop_name, None)
if st.button("Submit", key=32):
prediction = loaded_model.predict(input_data)
predicted_label = [key for key, value in mapp.items() if value == prediction][0]
st.success(f"The predicted fruit is: {predicted_label}")
crop_image_url = get_crop_image_url(predicted_label.capitalize())
if crop_image_url is None:
st.warning("No image found for the predicted fruit.")
else:
try:
st.markdown(f'<img src="{crop_image_url}" alt="Image for {predicted_label}" style="width:300px; height:300px;">', unsafe_allow_html=True)
except Exception as e:
st.warning(f"Error displaying image: {e}")
except AttributeError:
st.warning("Please Select the city")
# col1, col2 = st.columns(2)
# with col1:
# Soil_EC = st.selectbox(('Soil conductivity'),(1,2,3,4),2,key = 3)
# with col2:
# Water_TDS = st.selectbox(('Water solvents'),(1,2,3,4,5,6),3,key = 4)
# col3,col4 = st.columns([3,1])
# with col3:
# Ph = st.slider("Enter ph",1,14,(1,7))
# with col4:
# Rain_Fall = st.number_input("Enter Annual Rainfall in mm", min_value=10.0, max_value=2000.0)
# weather_details = wa.get_weather_details(wa.city_name)
# if weather_details:
# Temperature = (weather_details['temperature'])
# Humidity =(weather_details['humidity'])
# st.write(Temperature)
# st.write(Humidity)
# input_data = [Soil_EC,Water_TDS,Temperature,Humidity,Ph,Rain_Fall]
# if st.button('Submit',key = 1):
# input_data = np.asarray(input_data).reshape(1, -1)
# crop_pred = Crop_recommendation_function2(input_data)
# progress = st.progress(0)
# for i in range(100):
# time.sleep(0.005)
# progress.progress(i+1)
# st.subheader(f"Crop Recommendation: {crop_pred.capitalize()}")
# crop_image_url = get_crop_image_url(crop_pred)
# try:
# st.image(crop_image_url, caption=f"Image for {crop_prediction.capitalize()}", use_column_width=True)
# except:
# pass
with tab2:
st.markdown(html_code, unsafe_allow_html=True)
col1, col2 = st.columns(2)
nitrogen = col1.selectbox('Enter Nitrogen (e.g., in kg/ha)',(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140),key = 0)
phosphorus = col2.selectbox('Enter Phosphorus (e.g., in kg/ha)',(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 120, 125, 130, 135, 140, 145),key = 13)
potassium = col1.selectbox('Enter Potassium (e.g., in kg/ha)',(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 185, 190, 195, 200, 205),key = 2)
# Get weather details
# city_name = st.text_input("Enter City Name for Weather Details")
weather_details = wa.get_weather_details(wa.city_name)
ph = col2.slider('Enter pH value',value=6.502985,min_value=0.0,max_value=14.0,step=0.5)
rainfall = col1.number_input('Enter Rainfall (e.g., in mm)',value=202.935536,min_value=25.0,max_value=1000.0,step=5.0)
if weather_details:
temperature = weather_details['temperature']
humidity = weather_details['humidity']
crop_input = ''
def get_crop_image_url(crop_name):
# You need to replace the following with the actual URLs or paths of your crop images
crop_image_urls = {'Wheat': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRIp7ucodsB63giF1CvVjBtbHf14Px83ck2hcZRUJlMxA&s',
'Rice': 'https://media.istockphoto.com/id/153737841/photo/rice.webp?b=1&s=170667a&w=0&k=20&c=SF6Ks-8AYpbPTnZlGwNCbCFUh-0m3R5sM2hl-C5r_Xc=',
'Maize (Corn)': 'https://plus.unsplash.com/premium_photo-1667047165840-803e47970128?q=80&w=1000&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8MXx8bWFpemV8ZW58MHx8MHx8fDA%3D',
'Bajra (Pearl millet)': 'https://media.istockphoto.com/id/1400438871/photo/pear-millet-background.jpg?s=612x612&w=0&k=20&c=0GlBeceuX9Q_AZ0-CH57_A5s7_tD769N2f_jrbNcbrw=',
'Jowar (Sorghum)': 'https://media.istockphoto.com/id/1262684430/photo/closeup-view-of-a-white-millet-jowar.jpg?s=612x612&w=0&k=20&c=HLyBy06EjbABKybUy1nIQTfxMLV1-s4xofGigOdd6dU=',
'Barley': 'https://www.poshtik.in/cdn/shop/products/com1807851487263barley_Poshtik_c1712f8e-6b63-4231-9596-a49ce84f26ba.png?v=1626004318',
'Gram (Chickpea)': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQHtf9ivxD23Bp_-VOY4H2tCRMC0_znhzyAEt2jfzvUlskEZcv0',
'Tur (Pigeonpea)': 'https://rukminim2.flixcart.com/image/850/1000/xif0q/plant-seed/f/l/n/25-pigeon-pea-for-planting-home-garden-farming-vegetable-kitchen-original-imaghphgmepkjqfz.jpeg?q=90',
'Moong (Green Gram)': 'https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTyIa1Wq11MaHZ_cIdArPjZSR8cnr85STU83QsjKvkI9xNdVDjJ',
'Urad (Black gram)': 'https://encrypted-tbn0.gstatic.com/licensed-image?q=tbn:ANd9GcRl-eFmBSLAHxB7U_b_SQNptQoQpi585JWgpqU0LH0jmvmrp9mESzQrL3ieox6ICl_-v7rzl38Pi7faf-4',
'Masoor (Red lentil)': 'https://www.vegrecipesofindia.com/wp-content/uploads/2022/11/masoor-dal-red-lentils.jpg',
'Groundnut (Peanut)': 'https://www.netmeds.com/images/cms/wysiwyg/blog/2019/10/Groundnut_big_2.jpg',
'Sesamum (Sesame)': 'https://encrypted-tbn0.gstatic.com/licensed-image?q=tbn:ANd9GcThAjpal-k0urS19A2NEoVW35yqF9ljlvx1d-amDokoIiHZ9-RGyUsDaiVcr7SdfwsFjP-I6U1_VYeiEc0',
'Castor seed': 'https://5.imimg.com/data5/QV/VN/MY-3966004/caster-seeds.jpg',
'Sunflower': 'https://t0.gstatic.com/licensed-image?q=tbn:ANd9GcRuCcoGrqSVqOzxFU9rHPsWKxaHpm7i_srXQPMHaVfrrDmz4eXc5PGWpQFfpAr8qaH2',
'Safflower': 'https://upload.wikimedia.org/wikipedia/commons/7/7f/Safflower.jpg',
'Sugarcane': 'https://www.saveur.com/uploads/2022/03/05/sugarcane-linda-xiao.jpg?auto=webp',
'Cotton (lint)': 'https://img2.tradewheel.com/uploads/images/products/6/0/0048590001615360690-cotton-lint.jpeg.webp',
'Jute': 'https://rukminim2.flixcart.com/image/850/1000/kuk4u4w0/rope/d/k/f/2-jute-cord-for-craft-project-natural-jute-rope-jute-thread-original-imag7nrjbkrmgbpm.jpeg?q=20',
'Potato': 'https://cdn.mos.cms.futurecdn.net/iC7HBvohbJqExqvbKcV3pP.jpg',
'Onion': 'https://familyneeds.co.in/cdn/shop/products/2_445fc9bd-1bab-4bfb-8d5d-70b692745567_600x600.jpg?v=1600812246',
'Tomato': 'https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Tomato_je.jpg/1200px-Tomato_je.jpg',
'Banana': 'https://fruitboxco.com/cdn/shop/products/asset_2_grande.jpg?v=1571839043',
'Coconut': 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcS_rZgOJry6Twt8urk4C1FTo6d6tEDyiIw39w&usqp=CAU',
'Mango': "https://i.pinimg.com/474x/70/bd/5f/70bd5f8fd50d30bfcab3ac0f27ff4202.jpg",
'Orange': "https://images.unsplash.com/photo-1611080626919-7cf5a9dbab5b?q=80&w=1000&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8Mnx8b3Jhbmdlc3xlbnwwfHwwfHx8MA%3D%3D",
"Kidneybeans": "https://www.healthifyme.com/blog/wp-content/uploads/2022/01/807716893sst1641271427-scaled.jpg",
"Chickpea": "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQHtf9ivxD23Bp_-VOY4H2tCRMC0_znhzyAEt2jfzvUlskEZcv0",
"Grapes": "https://rukminim2.flixcart.com/image/850/1000/kt0enww0/plant-seed/h/h/n/25-dg-214-paudha-original-imag6fgvre6bmd5y.jpeg?q=90&crop=false",
"Coffee": "https://www.agrifarming.in/wp-content/uploads/2017/06/Coffee-Growing.-1.jpg"}
if crop_name not in crop_image_urls.keys():
return None
else:
return crop_image_urls[crop_name]
if st.button('Submit'):
crop_input = [nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall]
crop_prediction = Crop_recommendation_function(crop_input)
progress = st.progress(0)
for i in range(100):
time.sleep(0.005)
progress.progress(i+1)
st.subheader(f"Crop Recommendation: {crop_prediction.capitalize()}")
crop_image_url = get_crop_image_url(crop_prediction.capitalize())
try:
st.image(crop_image_url, caption=f"Image for {crop_prediction.capitalize()}", use_column_width=True)
except:
pass
with tab3:
df = pd.read_csv('Crop_recommendation.csv')
st.write('Current Dataset',df)
col1, col2 = st.columns(2)
nitrogen = col1.selectbox('Enter Nitrogen (e.g., in kg/ha)',(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140),key = 20)
phosphorus = col2.selectbox('Enter Phosphorus (e.g., in kg/ha)',(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 120, 125, 130, 135, 140, 145),key = 143)
potassium = col1.selectbox('Enter Potassium (e.g., in kg/ha)',(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 185, 190, 195, 200, 205),key = 21)
temperature = col2.number_input('Enter temprature',max_value=45.0,min_value=8.0,value=32.0,step = 2.0,key = 232)
humidity = col1.number_input('Enter Humidity',value=80.47,max_value=99.98,min_value=14.25,step = 2.0,key = 103)
ph = col2.slider('Enter pH value',value=6.502985,min_value=0.0,max_value=14.0,step=0.5,key = 104)
rainfall = col1.number_input('Enter Rainfall (e.g., in mm)',value=202.935536,min_value=25.0,max_value=1000.0,step=5.0,key = 105)
label = col1.selectbox('Enter the crop',('rice', 'maize', 'chickpea', 'kidneybeans', 'pigeonpeas',
'mothbeans', 'mungbean', 'blackgram', 'lentil', 'pomegranate',
'banana', 'mango', 'grapes', 'watermelon', 'muskmelon', 'apple',
'orange', 'papaya', 'coconut', 'cotton', 'jute', 'coffee'),key =106)
if st.button('submit'):
new_row = {'N':nitrogen, 'P':phosphorus, 'K':potassium, 'temperature':temperature, 'humidity':humidity, 'ph':ph, 'rainfall':rainfall, 'label':label}
df = df.append(new_row,ignore_index= True)
df.to_csv('Crop_recommendation.csv')
st.success("Thanks for the feedback")
st.write("Updated Dataset",df)
if __name__ == "__main__":
run_crop_recommendation() |