Spaces:
Sleeping
Sleeping
File size: 12,014 Bytes
0d80816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
from __future__ import print_function
import argparse
import copy
import logging
import os
import torch
import torch.distributed as dist
import torch.optim as optim
import yaml
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from wenet.dataset.dataset import Dataset
from wenet.utils.checkpoint import (
load_checkpoint,
save_checkpoint,
load_trained_modules,
)
from wenet.utils.executor import Executor
from wenet.utils.file_utils import read_symbol_table, read_non_lang_symbols
from wenet.utils.scheduler import WarmupLR, NoamHoldAnnealing
from wenet.utils.config import override_config
from wenet.utils.init_model import init_model
def get_args():
parser = argparse.ArgumentParser(description="training your network")
parser.add_argument("--config", required=True, help="config file")
parser.add_argument(
"--data_type",
default="raw",
choices=["raw", "shard"],
help="train and cv data type",
)
parser.add_argument("--train_data", required=True, help="train data file")
parser.add_argument("--cv_data", required=True, help="cv data file")
parser.add_argument(
"--gpu", type=int, default=-1, help="gpu id for this local rank, -1 for cpu"
)
parser.add_argument("--model_dir", required=True, help="save model dir")
parser.add_argument("--checkpoint", help="checkpoint model")
parser.add_argument(
"--tensorboard_dir", default="tensorboard", help="tensorboard log dir"
)
parser.add_argument(
"--ddp.rank",
dest="rank",
default=0,
type=int,
help="global rank for distributed training",
)
parser.add_argument(
"--ddp.world_size",
dest="world_size",
default=-1,
type=int,
help="""number of total processes/gpus for
distributed training""",
)
parser.add_argument(
"--ddp.dist_backend",
dest="dist_backend",
default="nccl",
choices=["nccl", "gloo"],
help="distributed backend",
)
parser.add_argument(
"--ddp.init_method", dest="init_method", default=None, help="ddp init method"
)
parser.add_argument(
"--num_workers",
default=0,
type=int,
help="num of subprocess workers for reading",
)
parser.add_argument(
"--pin_memory",
action="store_true",
default=False,
help="Use pinned memory buffers used for reading",
)
parser.add_argument(
"--use_amp",
action="store_true",
default=False,
help="Use automatic mixed precision training",
)
parser.add_argument(
"--fp16_grad_sync",
action="store_true",
default=False,
help="Use fp16 gradient sync for ddp",
)
parser.add_argument("--cmvn", default=None, help="global cmvn file")
parser.add_argument(
"--symbol_table", required=True, help="model unit symbol table for training"
)
parser.add_argument(
"--non_lang_syms", help="non-linguistic symbol file. One symbol per line."
)
parser.add_argument("--prefetch", default=100, type=int, help="prefetch number")
parser.add_argument(
"--bpe_model", default=None, type=str, help="bpe model for english part"
)
parser.add_argument(
"--override_config", action="append", default=[], help="override yaml config"
)
parser.add_argument(
"--enc_init",
default=None,
type=str,
help="Pre-trained model to initialize encoder",
)
parser.add_argument(
"--enc_init_mods",
default="encoder.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of encoder modules \
to initialize ,separated by a comma",
)
parser.add_argument("--lfmmi_dir", default="", required=False, help="LF-MMI dir")
args = parser.parse_args()
return args
def main():
args = get_args()
logging.basicConfig(
level=logging.DEBUG, format="%(asctime)s %(levelname)s %(message)s"
)
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# Set random seed
torch.manual_seed(777)
with open(args.config, "r") as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
if len(args.override_config) > 0:
configs = override_config(configs, args.override_config)
distributed = args.world_size > 1
if distributed:
logging.info("training on multiple gpus, this gpu {}".format(args.gpu))
dist.init_process_group(
args.dist_backend,
init_method=args.init_method,
world_size=args.world_size,
rank=args.rank,
)
symbol_table = read_symbol_table(args.symbol_table)
train_conf = configs["dataset_conf"]
cv_conf = copy.deepcopy(train_conf)
cv_conf["speed_perturb"] = False
cv_conf["spec_aug"] = False
cv_conf["spec_sub"] = False
cv_conf["spec_trim"] = False
cv_conf["shuffle"] = False
non_lang_syms = read_non_lang_symbols(args.non_lang_syms)
train_dataset = Dataset(
args.data_type,
args.train_data,
symbol_table,
train_conf,
args.bpe_model,
non_lang_syms,
True,
)
cv_dataset = Dataset(
args.data_type,
args.cv_data,
symbol_table,
cv_conf,
args.bpe_model,
non_lang_syms,
partition=False,
)
train_data_loader = DataLoader(
train_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
prefetch_factor=args.prefetch,
)
cv_data_loader = DataLoader(
cv_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
prefetch_factor=args.prefetch,
)
if "fbank_conf" in configs["dataset_conf"]:
input_dim = configs["dataset_conf"]["fbank_conf"]["num_mel_bins"]
else:
input_dim = configs["dataset_conf"]["mfcc_conf"]["num_mel_bins"]
vocab_size = len(symbol_table)
# Save configs to model_dir/train.yaml for inference and export
configs["input_dim"] = input_dim
configs["output_dim"] = vocab_size
configs["cmvn_file"] = args.cmvn
configs["is_json_cmvn"] = True
configs["lfmmi_dir"] = args.lfmmi_dir
if args.rank == 0:
saved_config_path = os.path.join(args.model_dir, "train.yaml")
with open(saved_config_path, "w") as fout:
data = yaml.dump(configs)
fout.write(data)
# Init asr model from configs
model = init_model(configs)
print(model)
num_params = sum(p.numel() for p in model.parameters())
print("the number of model params: {:,d}".format(num_params))
# !!!IMPORTANT!!!
# Try to export the model by script, if fails, we should refine
# the code to satisfy the script export requirements
if args.rank == 0:
script_model = torch.jit.script(model)
script_model.save(os.path.join(args.model_dir, "init.zip"))
executor = Executor()
# If specify checkpoint, load some info from checkpoint
if args.checkpoint is not None:
infos = load_checkpoint(model, args.checkpoint)
elif args.enc_init is not None:
logging.info("load pretrained encoders: {}".format(args.enc_init))
infos = load_trained_modules(model, args)
else:
infos = {}
start_epoch = infos.get("epoch", -1) + 1
cv_loss = infos.get("cv_loss", 0.0)
step = infos.get("step", -1)
num_epochs = configs.get("max_epoch", 100)
model_dir = args.model_dir
writer = None
if args.rank == 0:
os.makedirs(model_dir, exist_ok=True)
exp_id = os.path.basename(model_dir)
writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id))
if distributed:
assert torch.cuda.is_available()
# cuda model is required for nn.parallel.DistributedDataParallel
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(
model, find_unused_parameters=True
)
device = torch.device("cuda")
if args.fp16_grad_sync:
from torch.distributed.algorithms.ddp_comm_hooks import (
default as comm_hooks,
)
model.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook)
else:
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model = model.to(device)
if configs["optim"] == "adam":
optimizer = optim.Adam(model.parameters(), **configs["optim_conf"])
elif configs["optim"] == "adamw":
optimizer = optim.AdamW(model.parameters(), **configs["optim_conf"])
else:
raise ValueError("unknown optimizer: " + configs["optim"])
if configs["scheduler"] == "warmuplr":
scheduler = WarmupLR(optimizer, **configs["scheduler_conf"])
elif configs["scheduler"] == "NoamHoldAnnealing":
scheduler = NoamHoldAnnealing(optimizer, **configs["scheduler_conf"])
else:
raise ValueError("unknown scheduler: " + configs["scheduler"])
final_epoch = None
configs["rank"] = args.rank
configs["is_distributed"] = distributed
configs["use_amp"] = args.use_amp
if start_epoch == 0 and args.rank == 0:
save_model_path = os.path.join(model_dir, "init.pt")
save_checkpoint(model, save_model_path)
# Start training loop
executor.step = step
scheduler.set_step(step)
# used for pytorch amp mixed precision training
scaler = None
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
for epoch in range(start_epoch, num_epochs):
train_dataset.set_epoch(epoch)
configs["epoch"] = epoch
lr = optimizer.param_groups[0]["lr"]
logging.info("Epoch {} TRAIN info lr {}".format(epoch, lr))
executor.train(
model,
optimizer,
scheduler,
train_data_loader,
device,
writer,
configs,
scaler,
)
total_loss, num_seen_utts = executor.cv(model, cv_data_loader, device, configs)
cv_loss = total_loss / num_seen_utts
logging.info("Epoch {} CV info cv_loss {}".format(epoch, cv_loss))
if args.rank == 0:
save_model_path = os.path.join(model_dir, "{}.pt".format(epoch))
save_checkpoint(
model,
save_model_path,
{"epoch": epoch, "lr": lr, "cv_loss": cv_loss, "step": executor.step},
)
writer.add_scalar("epoch/cv_loss", cv_loss, epoch)
writer.add_scalar("epoch/lr", lr, epoch)
final_epoch = epoch
if final_epoch is not None and args.rank == 0:
final_model_path = os.path.join(model_dir, "final.pt")
os.remove(final_model_path) if os.path.exists(final_model_path) else None
os.symlink("{}.pt".format(final_epoch), final_model_path)
writer.close()
if __name__ == "__main__":
main()
|