File size: 16,566 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

from __future__ import print_function

import argparse
import copy
import logging
import os
import sys

import torch
import yaml
from torch.utils.data import DataLoader

from wenet.dataset.dataset import Dataset
from wenet.paraformer.search.beam_search import build_beam_search
from wenet.utils.checkpoint import load_checkpoint
from wenet.utils.file_utils import read_symbol_table, read_non_lang_symbols
from wenet.utils.config import override_config
from wenet.utils.init_model import init_model


def get_args():
    parser = argparse.ArgumentParser(description="recognize with your model")
    parser.add_argument("--config", required=True, help="config file")
    parser.add_argument("--test_data", required=True, help="test data file")
    parser.add_argument(
        "--data_type",
        default="raw",
        choices=["raw", "shard"],
        help="train and cv data type",
    )
    parser.add_argument(
        "--gpu", type=int, default=-1, help="gpu id for this rank, -1 for cpu"
    )
    parser.add_argument("--checkpoint", required=True, help="checkpoint model")
    parser.add_argument("--dict", required=True, help="dict file")
    parser.add_argument(
        "--non_lang_syms", help="non-linguistic symbol file. One symbol per line."
    )
    parser.add_argument(
        "--beam_size", type=int, default=10, help="beam size for search"
    )
    parser.add_argument("--penalty", type=float, default=0.0, help="length penalty")
    parser.add_argument("--result_file", required=True, help="asr result file")
    parser.add_argument("--batch_size", type=int, default=16, help="asr result file")
    parser.add_argument(
        "--mode",
        choices=[
            "attention",
            "ctc_greedy_search",
            "ctc_prefix_beam_search",
            "attention_rescoring",
            "rnnt_greedy_search",
            "rnnt_beam_search",
            "rnnt_beam_attn_rescoring",
            "ctc_beam_td_attn_rescoring",
            "hlg_onebest",
            "hlg_rescore",
            "paraformer_greedy_search",
            "paraformer_beam_search",
        ],
        default="attention",
        help="decoding mode",
    )

    parser.add_argument(
        "--search_ctc_weight",
        type=float,
        default=1.0,
        help="ctc weight for nbest generation",
    )
    parser.add_argument(
        "--search_transducer_weight",
        type=float,
        default=0.0,
        help="transducer weight for nbest generation",
    )
    parser.add_argument(
        "--ctc_weight",
        type=float,
        default=0.0,
        help="ctc weight for rescoring weight in \
                                  attention rescoring decode mode \
                              ctc weight for rescoring weight in \
                                  transducer attention rescore decode mode",
    )

    parser.add_argument(
        "--transducer_weight",
        type=float,
        default=0.0,
        help="transducer weight for rescoring weight in "
        "transducer attention rescore mode",
    )
    parser.add_argument(
        "--attn_weight",
        type=float,
        default=0.0,
        help="attention weight for rescoring weight in "
        "transducer attention rescore mode",
    )
    parser.add_argument(
        "--decoding_chunk_size",
        type=int,
        default=-1,
        help="""decoding chunk size,
                                <0: for decoding, use full chunk.
                                >0: for decoding, use fixed chunk size as set.
                                0: used for training, it's prohibited here""",
    )
    parser.add_argument(
        "--num_decoding_left_chunks",
        type=int,
        default=-1,
        help="number of left chunks for decoding",
    )
    parser.add_argument(
        "--simulate_streaming", action="store_true", help="simulate streaming inference"
    )
    parser.add_argument(
        "--reverse_weight",
        type=float,
        default=0.0,
        help="""right to left weight for attention rescoring
                                decode mode""",
    )
    parser.add_argument(
        "--bpe_model", default=None, type=str, help="bpe model for english part"
    )
    parser.add_argument(
        "--override_config", action="append", default=[], help="override yaml config"
    )
    parser.add_argument(
        "--connect_symbol",
        default="",
        type=str,
        help="used to connect the output characters",
    )

    parser.add_argument(
        "--word", default="", type=str, help="word file, only used for hlg decode"
    )
    parser.add_argument(
        "--hlg", default="", type=str, help="hlg file, only used for hlg decode"
    )
    parser.add_argument(
        "--lm_scale",
        type=float,
        default=0.0,
        help="lm scale for hlg attention rescore decode",
    )
    parser.add_argument(
        "--decoder_scale",
        type=float,
        default=0.0,
        help="lm scale for hlg attention rescore decode",
    )
    parser.add_argument(
        "--r_decoder_scale",
        type=float,
        default=0.0,
        help="lm scale for hlg attention rescore decode",
    )

    args = parser.parse_args()
    print(args)
    return args


def main():
    args = get_args()
    logging.basicConfig(
        level=logging.DEBUG, format="%(asctime)s %(levelname)s %(message)s"
    )
    os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)

    if (
        args.mode
        in [
            "ctc_prefix_beam_search",
            "attention_rescoring",
            "paraformer_beam_search",
        ]
        and args.batch_size > 1
    ):
        logging.fatal(
            "decoding mode {} must be running with batch_size == 1".format(args.mode)
        )
        sys.exit(1)

    with open(args.config, "r") as fin:
        configs = yaml.load(fin, Loader=yaml.FullLoader)
    if len(args.override_config) > 0:
        configs = override_config(configs, args.override_config)

    symbol_table = read_symbol_table(args.dict)
    test_conf = copy.deepcopy(configs["dataset_conf"])

    test_conf["filter_conf"]["max_length"] = 102400
    test_conf["filter_conf"]["min_length"] = 0
    test_conf["filter_conf"]["token_max_length"] = 102400
    test_conf["filter_conf"]["token_min_length"] = 0
    test_conf["filter_conf"]["max_output_input_ratio"] = 102400
    test_conf["filter_conf"]["min_output_input_ratio"] = 0
    test_conf["speed_perturb"] = False
    test_conf["spec_aug"] = False
    test_conf["spec_sub"] = False
    test_conf["spec_trim"] = False
    test_conf["shuffle"] = False
    test_conf["sort"] = False
    if "fbank_conf" in test_conf:
        test_conf["fbank_conf"]["dither"] = 0.0
    elif "mfcc_conf" in test_conf:
        test_conf["mfcc_conf"]["dither"] = 0.0
    test_conf["batch_conf"]["batch_type"] = "static"
    test_conf["batch_conf"]["batch_size"] = args.batch_size
    non_lang_syms = read_non_lang_symbols(args.non_lang_syms)

    test_dataset = Dataset(
        args.data_type,
        args.test_data,
        symbol_table,
        test_conf,
        args.bpe_model,
        non_lang_syms,
        partition=False,
    )

    test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)

    # Init asr model from configs
    model = init_model(configs)

    # Load dict
    char_dict = {v: k for k, v in symbol_table.items()}
    eos = len(char_dict) - 1

    load_checkpoint(model, args.checkpoint)
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    model = model.to(device)

    model.eval()

    # Build BeamSearchCIF object
    if args.mode == "paraformer_beam_search":
        paraformer_beam_search = build_beam_search(model, args, device)
    else:
        paraformer_beam_search = None

    with torch.no_grad(), open(args.result_file, "w") as fout:
        for batch_idx, batch in enumerate(test_data_loader):
            keys, feats, target, feats_lengths, target_lengths = batch
            feats = feats.to(device)
            target = target.to(device)
            feats_lengths = feats_lengths.to(device)
            target_lengths = target_lengths.to(device)
            if args.mode == "attention":
                hyps, _ = model.recognize(
                    feats,
                    feats_lengths,
                    beam_size=args.beam_size,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                )
                hyps = [hyp.tolist() for hyp in hyps]
            elif args.mode == "ctc_greedy_search":
                hyps, _ = model.ctc_greedy_search(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                )
            elif args.mode == "rnnt_greedy_search":
                assert feats.size(0) == 1
                assert "predictor" in configs
                hyps = model.greedy_search(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                )
            elif args.mode == "rnnt_beam_search":
                assert feats.size(0) == 1
                assert "predictor" in configs
                hyps = model.beam_search(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    beam_size=args.beam_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                    ctc_weight=args.search_ctc_weight,
                    transducer_weight=args.search_transducer_weight,
                )
            elif args.mode == "rnnt_beam_attn_rescoring":
                assert feats.size(0) == 1
                assert "predictor" in configs
                hyps = model.transducer_attention_rescoring(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    beam_size=args.beam_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                    ctc_weight=args.ctc_weight,
                    transducer_weight=args.transducer_weight,
                    attn_weight=args.attn_weight,
                    reverse_weight=args.reverse_weight,
                    search_ctc_weight=args.search_ctc_weight,
                    search_transducer_weight=args.search_transducer_weight,
                )
            elif args.mode == "ctc_beam_td_attn_rescoring":
                assert feats.size(0) == 1
                assert "predictor" in configs
                hyps = model.transducer_attention_rescoring(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    beam_size=args.beam_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                    ctc_weight=args.ctc_weight,
                    transducer_weight=args.transducer_weight,
                    attn_weight=args.attn_weight,
                    reverse_weight=args.reverse_weight,
                    search_ctc_weight=args.search_ctc_weight,
                    search_transducer_weight=args.search_transducer_weight,
                    beam_search_type="ctc",
                )
            # ctc_prefix_beam_search and attention_rescoring only return one
            # result in List[int], change it to List[List[int]] for compatible
            # with other batch decoding mode
            elif args.mode == "ctc_prefix_beam_search":
                assert feats.size(0) == 1
                hyp, _ = model.ctc_prefix_beam_search(
                    feats,
                    feats_lengths,
                    args.beam_size,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                )
                hyps = [hyp]
            elif args.mode == "attention_rescoring":
                assert feats.size(0) == 1
                hyp, _ = model.attention_rescoring(
                    feats,
                    feats_lengths,
                    args.beam_size,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    ctc_weight=args.ctc_weight,
                    simulate_streaming=args.simulate_streaming,
                    reverse_weight=args.reverse_weight,
                )
                hyps = [hyp]
            elif args.mode == "hlg_onebest":
                hyps = model.hlg_onebest(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                    hlg=args.hlg,
                    word=args.word,
                    symbol_table=symbol_table,
                )
            elif args.mode == "hlg_rescore":
                hyps = model.hlg_rescore(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                    lm_scale=args.lm_scale,
                    decoder_scale=args.decoder_scale,
                    r_decoder_scale=args.r_decoder_scale,
                    hlg=args.hlg,
                    word=args.word,
                    symbol_table=symbol_table,
                )
            elif args.mode == "paraformer_beam_search":
                hyps = model.paraformer_beam_search(
                    feats,
                    feats_lengths,
                    beam_search=paraformer_beam_search,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                )
            elif args.mode == "paraformer_greedy_search":
                hyps = model.paraformer_greedy_search(
                    feats,
                    feats_lengths,
                    decoding_chunk_size=args.decoding_chunk_size,
                    num_decoding_left_chunks=args.num_decoding_left_chunks,
                    simulate_streaming=args.simulate_streaming,
                )
            for i, key in enumerate(keys):
                content = []
                for w in hyps[i]:
                    if w == eos:
                        break
                    content.append(char_dict[w])
                logging.info("{} {}".format(key, args.connect_symbol.join(content)))
                fout.write("{} {}\n".format(key, args.connect_symbol.join(content)))


if __name__ == "__main__":
    main()