File size: 6,689 Bytes
69cffc7
9f253d2
 
69cffc7
 
 
 
 
 
9f253d2
69cffc7
 
9f253d2
69cffc7
 
 
 
 
 
9f253d2
69cffc7
b9b6700
 
9f253d2
69cffc7
 
 
 
 
b9b6700
 
 
 
9f253d2
69cffc7
9f253d2
69cffc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f253d2
 
69cffc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40317f4
69cffc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f253d2
69cffc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f253d2
69cffc7
 
 
 
 
 
 
 
 
 
 
9f253d2
69cffc7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import spaces
import gradio as gr
import torch
import torchvision as tv
import random, os
from diffusers import StableVideoDiffusionPipeline 
from PIL import Image
from glob import glob
from typing import Optional

from tdd_svd_scheduler import TDDSVDStochasticIterativeScheduler
from utils import load_lora_weights, save_video

# LOCAL = True
LOCAL = False

if LOCAL:
    svd_path = '/share2/duanyuxuan/diff_playground/diffusers_models/stable-video-diffusion-img2vid-xt-1-1'
    lora_file_path = '/share2/duanyuxuan/diff_playground/SVD-TDD/svd-xt-1-1_tdd_lora_weights.safetensors'
else:
    svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
    lora_repo_path = 'RED-AIGC/TDD'
    lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'

if torch.cuda.is_available():
    noise_scheduler = TDDSVDStochasticIterativeScheduler(num_train_timesteps = 250, sigma_min = 0.002, sigma_max = 700.0, sigma_data = 1.0, 
                                                        s_noise = 1.0, rho = 7, clip_denoised = False)
    
    pipeline = StableVideoDiffusionPipeline.from_pretrained(svd_path, scheduler = noise_scheduler, torch_dtype = torch.float16, variant = "fp16").to('cuda')
    if LOCAL:
        load_lora_weights(pipeline.unet, lora_file_path)
    else:
        load_lora_weights(pipeline.unet, lora_repo_path, weight_name = lora_weight_name)

max_64_bit_int = 2**63 - 1

@spaces.GPU
def sample(
    image: Image,
    seed: Optional[int] = 1,
    randomize_seed: bool = False,
    num_inference_steps: int = 4,
    eta: float = 0.3,
    min_guidance_scale: float = 1.0,
    max_guidance_scale: float = 1.0,

    fps: int = 7,
    width: int = 512,
    height: int = 512,
    num_frames: int = 25,
    motion_bucket_id: int = 127,
    output_folder: str = "outputs_gradio",
):
    pipeline.scheduler.set_eta(eta)

    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)
    generator = torch.manual_seed(seed)

    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

    with torch.autocast("cuda"):
        frames = pipeline(
            image, height = height, width = width,
            num_inference_steps = num_inference_steps,
            min_guidance_scale = min_guidance_scale,
            max_guidance_scale = max_guidance_scale,
            num_frames = num_frames, fps = fps, motion_bucket_id = motion_bucket_id,
            decode_chunk_size = 8,
            noise_aug_strength = 0.02,
            generator = generator,
        ).frames[0]
    save_video(frames, video_path, fps = fps, quality = 5.0)
    torch.manual_seed(seed)

    return video_path, seed


def preprocess_image(image, height = 512, width = 512):
    image = image.convert('RGB')
    if image.size[0] != image.size[1]:
        image = tv.transforms.functional.pil_to_tensor(image)
        image = tv.transforms.functional.center_crop(image, min(image.shape[-2:]))
        image = tv.transforms.functional.to_pil_image(image)
    image = image.resize((width, height))
    return image


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Stable Video Diffusion distilled by ✨Target-Driven Distillation✨

        Target-Driven Distillation (TDD) is a state-of-the-art consistency distillation model that largely accelerates the inference processes of diffusion models. Using its delicate strategies of *target timestep selection* and *decoupled guidance*, models distilled by TDD can generated highly detailed images with only a few steps.

        Besides, TDD is also available for distilling video generation models. This space presents TDD-distilled [SVD-xt 1.1](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1).

        [**Project Page**](https://redaigc.github.io/TDD/) **|** [**Paper**](https://arxiv.org/abs/2409.01347) **|** [**Code**](https://github.com/RedAIGC/Target-Driven-Distillation) **|** [**Model**](https://huggingface.co/RED-AIGC/TDD) **|** [🤗 **TDD-SDXL Demo**](https://huggingface.co/spaces/RED-AIGC/TDD) **|** [🤗 **TDD-SVD Demo**](https://huggingface.co/spaces/RED-AIGC/SVD-TDD)

        The codes of this space are built on [AnimateLCM-SVD](https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD) and we acknowledge their contribution.
        """
    )
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Upload your image", type="pil")
            generate_btn = gr.Button("Generate")
        video = gr.Video()
    with gr.Accordion("Options", open = True):
        seed = gr.Slider(
            label="Seed",
            value=1,
            randomize=False,
            minimum=0,
            maximum=max_64_bit_int,
            step=1,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
        min_guidance_scale = gr.Slider(
            label="Min guidance scale",
            info="min strength of classifier-free guidance",
            value=1.0,
            minimum=1.0,
            maximum=1.5,
        )
        max_guidance_scale = gr.Slider(
            label="Max guidance scale",
            info="max strength of classifier-free guidance, it should not be less than Min guidance scale",
            value=1.0,
            minimum=1.0,
            maximum=3.0,
        )
        num_inference_steps = gr.Slider(
            label="Num inference steps",
            info="steps for inference",
            value=4,
            minimum=4,
            maximum=8,
            step=1,
        )
        eta = gr.Slider(
            label = "Eta",
            info = "the value of gamma in gamma-sampling",
            value = 0.3,
            minimum = 0.0,
            maximum = 1.0,
            step = 0.1,
        )

    image.upload(fn = preprocess_image, inputs = image, outputs = image, queue = False)
    generate_btn.click(
        fn = sample,
        inputs = [
            image,
            seed,
            randomize_seed,
            num_inference_steps,
            eta,
            min_guidance_scale,
            max_guidance_scale,
        ],
        outputs = [video, seed],
        api_name = "video",
    )
    # safetensors_dropdown.change(fn=model_select, inputs=safetensors_dropdown)

    # gr.Examples(
    #     examples=[
    #         ["examples/ipadapter_cat.jpg"],
    #     ],
    #     inputs=[image],
    #     outputs=[video, seed],
    #     fn=sample,
    #     cache_examples=True,
    # )

if __name__ == "__main__":
    if LOCAL:
        demo.queue().launch(share=True, server_name='0.0.0.0')
    else:
        demo.queue(api_open=False).launch(show_api=False)