File size: 6,990 Bytes
1a1daaa
429d819
 
 
809df2f
1a1daaa
 
 
 
 
 
 
 
 
 
 
e8d1963
1a1daaa
 
 
 
e8d1963
1a1daaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347385
 
 
 
 
 
e8d1963
d347385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d1963
d347385
 
 
 
 
 
 
 
 
 
e8d1963
d347385
 
 
e8d1963
d347385
 
 
aabba29
bd1111c
 
7e4124b
bd1111c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809df2f
 
 
bd1111c
 
 
7e4124b
809df2f
 
 
 
bd1111c
 
7e4124b
bd1111c
 
 
 
 
 
 
 
 
9ac40ae
 
 
7e4124b
 
9ac40ae
 
 
 
 
 
 
 
eef013f
9d315b3
bd1111c
809df2f
bd1111c
 
 
 
 
9ac40ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import yt_dlp 
import cv2
import os
from skimage.metrics import structural_similarity as ssim
from tqdm import tqdm

def download_video(url):
    """downlad video and audio from youtube url
    Args:
        url (str): youtube video url
    Returns:
        video_filename (str): path to the downloaded video file
        audio_filename (str): path to the downloaded audio file
    """

    # instanciate output path
    output_path='/tmp'
    if not os.path.exists(output_path):
        os.mkdir(output_path)

    # get cookies
    export_cookies_path = "/tmp/exported_cookies.txt"
    os.makedirs(os.path.dirname(export_cookies_path), exist_ok=True)
    try:
        ydl_opts_export_cookies = {
            'cookiesfrombrowser': ('firefox',None,None,None), 
            'cookiefile': export_cookies_path,
            'quiet': True,
        }
        print(f"Attempting to export cookies from Firefox to {export_cookies_path}...")
        with yt_dlp.YoutubeDL(ydl_opts_export_cookies) as ydl:
            # A dummy URL is often sufficient for cookie export
            ydl.extract_info("https://www.youtube.com", download=False)
        print("Cookies exported successfully (if Firefox was installed and logged in).")

    except yt_dlp.utils.DownloadError as e:
        print(f"Could not export cookies from browser: {e}")
        print("Please ensure a supported browser is installed and logged in, or manually create a 'cookies.txt' file.")


    
    # get video
    ydl_opts_video = {
        'format': 'worst[ext=mp4]',
        'outtmpl': output_path+'/video/'+'%(title)s_video.%(ext)s',
        'quiet': True
    }
    print('Downloading video...')
    with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
        info_dict = ydl.extract_info(url, download=True)
        video_filename = ydl.prepare_filename(info_dict)

    # get audio
    audio_opts = {
        'format': 'bestaudio[ext=m4a]',
        'outtmpl': output_path+'/audio/'+'%(title)s.audio.%(ext)s',
        'quiet': False,
        'noplaylist': True,
    }
    print('Downloading audio...')
    with yt_dlp.YoutubeDL(audio_opts) as ydl:
        info_dict = ydl.extract_info(url, download=True)
        audio_filename = ydl.prepare_filename(info_dict)

        
    return {
        "video_path": video_filename,
        "audio_path": audio_filename,
    }





def is_significantly_different(img1, img2, threshold=0.1):
    """Check if two images are significantly different using SSIM.
    Args:
        img1 (numpy.ndarray): First image.
        img2 (numpy.ndarray): Second image.
        threshold (float): SSIM threshold to determine significant difference.
    Returns:
        bool: True if images are significantly different, False otherwise.
    """
    grayA = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    grayB = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
    score, _ = ssim(grayA, grayB, full=True)
    return score < threshold  # Lower score means more different



def extract_keyframes(video_path, diff_threshold=0.4):
    """Extract key frames from a video based on significant differences.
    Args:
        video_path (str): Path to the input video file.
        output_path (str): Directory to save the extracted key frames.
        diff_threshold (float): SSIM threshold to determine significant difference.
    """
    cap = cv2.VideoCapture(video_path)
    frame_id = 0
    saved_id = 0
    success, prev_frame = cap.read()

    if not success:
        print("Failed to read video.")
        return
    
    output_path='/tmp/video/frames'
    if not os.path.exists(output_path):
        os.mkdir(output_path)

    while True:
        success, frame = cap.read()
        if not success:
            break
        frame_id += 1

        if is_significantly_different(prev_frame, frame, threshold=diff_threshold):
            filename = os.path.join("/tmp/video/frames/",f"keyframe_{saved_id:04d}.jpg")
            cv2.imwrite(filename, frame)
            prev_frame = frame
            saved_id += 1
            print(f"frame{saved_id} saved")

    cap.release()
    print(f"Extracted {saved_id} key frames.")
    return "success"


def extract_nfps_frames(video_path, nfps=30,diff_threshold=0.4):
    """Extract 1 frame per second from a video.
    Args:
        video_path (str): Path to the input video file.
    """
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("Failed to read video.")
        return

    output_path = '/tmp/video/frames'
    os.makedirs(output_path, exist_ok=True)

    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_interval = int(fps) * nfps  # Capture one frame every n second

    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    pbar = tqdm(total=total_frames, desc="Processing Frames")

    frame_id = 0
    saved_id = 0
    success, prev_frame = cap.read()
    all_frames_data=[]

    from load_vision_model_locally import VideoAnalyzer
    analyser = VideoAnalyzer()

    while True:
        success, frame = cap.read()

        if not success:
            break

        if frame_id % frame_interval == 0 and is_significantly_different(prev_frame, frame, threshold=diff_threshold):
            filename = os.path.join(output_path, f"frame_{saved_id:04d}.jpg")
            cv2.imwrite(filename, frame)
            prev_frame = frame
            saved_id += 1

            # append to a list that will constitute RAG Docuement
            timestamp_ms = cap.get(cv2.CAP_PROP_POS_MSEC)
            timestamp_sec = timestamp_ms / 1000.0
            description = analyser.describe_frame(filename)
            objects = analyser.detect_objects(filename)
            frame_data = {
                "frame_id": saved_id,
                "timestamp_sec": timestamp_sec,
                "description": description,
                "detected_objects": objects,
                "frame_path": filename  # Optional: path to the saved frame
            }
            all_frames_data.append(frame_data)

            print(5*"{*}\n",f"--> description {description}")
        frame_id += 1
        pbar.update(1)

    cap.release()
    print(f"Extracted {saved_id} frames (1 per second).")
    return all_frames_data


from langchain.docstore.document import Document

def provide_video_RAG(all_frames_data):
    # Assuming 'all_frames_data' is the list from the previous step
    langchain_documents = []

    for data in all_frames_data:
        # Combine the analysis into a single string for the document content
        content = f"Description: {data['description']}\nObjects Detected: {', '.join(data['detected_objects'])}"
        
        # Create the LangChain Document
        doc = Document(
            page_content=content,
            metadata={
                "timestamp": data['timestamp_sec'],
                "frame_id": data['frame_id']
            }
        )
        
        langchain_documents.append(doc)
    return langchain_documents
    # Now 'langchain_documents' is ready to be indexed in a vector store for your RAG system