File size: 7,088 Bytes
6c3d109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380259
6c3d109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380259
6c3d109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import gradio as gr
from pathlib import Path
import pysrt
import pandas as pd

if os.path.isdir(f'{os.getcwd() + os.sep}whisper.cpp'):
    print("Models already loaded")
else:
    os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
    os.system('git clone https://huggingface.co/Finnish-NLP/Finnish-finetuned-whisper-models-ggml-format')
    os.system('make -C ./whisper.cpp')



whisper_models = ["medium", "large"]
whisper_modelpath_translator= {
    "medium": "./Finnish-finetuned-whisper-models-ggml-format/ggml-model-fi-medium.bin",
    "large": "./Finnish-finetuned-whisper-models-ggml-format/ggml-model-fi-large-v3.bin"
    }



def speech_to_text(audio_path, whisper_model):

    if(audio_path is None):
        raise ValueError("Error no audio input")
    print(audio_path)
    try:

        _,file_ending = os.path.splitext(f'{audio_path}')
        print(f'file enging is {file_ending}')
        print("starting conversion to wav")
        os.system(f'ffmpeg -i "{audio_path}" -ar 16000 -y -ac 1 -c:a pcm_s16le "{audio_path.replace(file_ending, ".wav")}"')
        print("conversion to wav ready")

    except Exception as e:
        raise RuntimeError(f'Error Running inference with local model: {e}') from e

    try:

        print("starting whisper c++")
        srt_path = str(audio_path.replace(file_ending, ".wav")) + ".srt"
        os.system(f'rm -f {srt_path}')
        os.system(f'./whisper.cpp/main "{audio_path.replace(file_ending, ".wav")}" -t 4 -m ./{whisper_modelpath_translator.get(whisper_model)} -osrt')
        print("starting whisper done with whisper")
    except Exception as e:
        raise RuntimeError(f'Error running Whisper cpp model: {e}') from e

    try:    

        df = pd.DataFrame(columns = ['start','end','text'])
        srt_path = str(audio_path.replace(file_ending, ".wav")) + ".srt"
        subs = pysrt.open(srt_path)


        rows = []
        for sub in subs:
            start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
            end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
            
            start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
            end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
            
            start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
            end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
            
            start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
            end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
            rows.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])

        for row in rows:
            srt_to_df = {
            'start': [row[1]],
            'end': [row[2]], 
            'text': [row[0]] 
            }
    
            df = pd.concat([df, pd.DataFrame(srt_to_df)])
            
    except Exception as e:
        print(f"Error creating srt df with error: {e}")
                    
    return df

def output_to_files(df):
    
    df.reset_index(inplace=True)
    

    print("Starting SRT-file creation")
    print(df.head())
    
    with open('subtitles.vtt','w', encoding="utf-8") as file:
        print("Starting WEBVTT-file creation")
    
        for i in range(len(df)):
            if i == 0:
                file.write('WEBVTT')
                file.write('\n')

            else:
                file.write(str(i+1))
                file.write('\n')
                start = df.iloc[i]['start']
               
            
                file.write(f"{start.strip()}")
                
                stop = df.iloc[i]['end']
                
                
                file.write(' --> ')
                file.write(f"{stop}")
                file.write('\n')
                file.writelines(df.iloc[i]['text'])
                if int(i) != len(df)-1:
                    file.write('\n\n')

    print("WEBVTT DONE") 

    with open('subtitles.srt','w', encoding="utf-8") as file:
        print("Starting SRT-file creation")
    
        for i in range(len(df)):
            file.write(str(i+1))
            file.write('\n')
            start = df.iloc[i]['start']
           
        
            file.write(f"{start.strip()}")
            
            stop = df.iloc[i]['end']
            
            
            file.write(' --> ')
            file.write(f"{stop}")
            file.write('\n')
            file.writelines(df.iloc[i]['text'])
            if int(i) != len(df)-1:
                file.write('\n\n')
        
    print("SRT DONE") 
    subtitle_files_out = ['subtitles.vtt','subtitles.srt']

    return subtitle_files_out

# ---- Gradio Layout -----





demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False


with demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            # FINNISH Audio --> TEXT APP
            ### This space allows you to: 
            1. Insert audio file or record with microphone
            2. Run audio through transcription process using speech recognition models
            3. Download generated transcriptions in .vtt and .srt formats
            ''')
            
            
    with gr.Row():
        with gr.Column():
            audio_in = gr.Audio(label="Audio file", type='filepath')
            transcribe_btn = gr.Button("Step 1. Transcribe audio")
            selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="large", label="Selected Whisper model", interactive=True)
            
    with gr.Row():
        with gr.Column():
            transcription_df = gr.DataFrame(headers = ['start','end','text'], label="Transcription dataframe")
            
    with gr.Row():
        with gr.Column():
            translate_transcriptions_button = gr.Button("Step 2. Create subtitle files")
            
            
    with gr.Row():
        with gr.Column():
            gr.Markdown('''##### From here you can download subtitles in .srt or .vtt format''')
            subtitle_files = gr.File(
                label="Download files",
                file_count="multiple",
                type="filepath",
                interactive=False,
            )
            
    # Functionalities 
    transcribe_btn.click(speech_to_text, [audio_in, selected_whisper_model], [transcription_df])
    translate_transcriptions_button.click(output_to_files, transcription_df, [subtitle_files])
    
demo.launch()