File size: 18,538 Bytes
15a0f20
 
 
 
2bc90ae
15a0f20
 
 
 
 
 
 
 
 
 
7f4eca1
7acad4b
15a0f20
 
 
c6ab63a
 
3569392
15a0f20
 
3569392
15a0f20
 
 
 
3569392
15a0f20
 
 
 
 
 
af4d386
 
 
 
 
 
 
 
 
 
 
 
15a0f20
2e1aa6d
 
15a0f20
af4d386
15a0f20
 
5c090df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a0f20
5c090df
 
 
 
 
 
 
 
 
15a0f20
5c090df
 
 
 
 
 
 
 
 
 
 
15a0f20
 
 
 
 
 
 
 
 
2482905
 
15a0f20
 
 
 
 
 
 
 
 
 
 
 
92eeed5
15a0f20
 
 
 
 
 
 
 
 
 
 
 
 
798e650
3a8a468
15a0f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798e650
15a0f20
798e650
3a8a468
15a0f20
97204eb
 
b193cd4
15a0f20
2e1aa6d
b193cd4
09a6682
90beadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0d1c6b
90beadc
 
3362322
90beadc
2e1aa6d
90beadc
 
 
 
 
 
 
 
 
 
95210ab
90beadc
 
 
 
 
 
15a0f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4d386
15a0f20
 
 
 
 
 
af4d386
15a0f20
 
 
 
 
 
 
b193cd4
 
 
 
 
 
 
 
1ff01e9
b193cd4
 
 
 
 
 
 
 
1ff01e9
b193cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
e91a934
b193cd4
 
 
 
 
 
 
 
180d310
6619abb
b193cd4
 
 
 
2c70857
b193cd4
 
 
 
 
 
 
 
 
01436f2
65d5a7c
 
b193cd4
2c70857
 
 
 
 
 
 
 
 
b193cd4
 
 
 
e6a997e
65d5a7c
e6a997e
 
 
 
 
 
 
01436f2
e6a997e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073083b
e6a997e
d12f0a8
 
 
01436f2
 
 
 
 
 
b193cd4
 
 
1f2abd5
b193cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a0f20
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

from ragatouille import RAGPretrainedModel
import subprocess
import json
import spaces
import firebase_admin
from firebase_admin import credentials, firestore
import logging
from pathlib import Path
from time import perf_counter
from datetime import datetime
import gradio as gr
from jinja2 import Environment, FileSystemLoader
import numpy as np
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from os import getenv

from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient


VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
#___________________
# service_account_key='firebase.json'
# # Create a Certificate object from the service account info
# cred = credentials.Certificate(service_account_key)
# # Initialize the Firebase Admin 
# firebase_admin.initialize_app(cred)

# # # Create a reference to the Firestore database
# db = firestore.client()
# #db usage
# collection_name = 'Nirvachana'  # Replace with your collection name
# field_name = 'message_count'  # Replace with your field name for count
# Examples
examples = ['Tabulate the difference between veins and arteries','What are defects in Human eye?',
            'Frame 5 short questions and 5 MCQ on Chapter 2 ','Suggest creative and engaging ideas to teach students on Chapter on Metals and Non Metals '
            ]



# def get_and_increment_value_count(db , collection_name, field_name):
#     """
#     Retrieves a value count from the specified Firestore collection and field,
#     increments it by 1, and updates the field with the new value."""
#     collection_ref = db.collection(collection_name)
#     doc_ref = collection_ref.document('count_doc')  # Assuming a dedicated document for count

#     # Use a transaction to ensure consistency across reads and writes
#     try:
#         with db.transaction() as transaction:
#             # Get the current value count (or initialize to 0 if it doesn't exist)
#             current_count_doc = doc_ref.get()
#             current_count_data = current_count_doc.to_dict()
#             if current_count_data:
#                 current_count = current_count_data.get(field_name, 0)
#             else:
#                 current_count = 0
#             # Increment the count
#             new_count = current_count + 1
#             # Update the document with the new count
#             transaction.set(doc_ref, {field_name: new_count})
#             return new_count
#     except Exception as e:
#         print(f"Error retrieving and updating value count: {e}")
#         return None  # Indicate error
        
# def update_count_html():
#     usage_count = get_and_increment_value_count(db ,collection_name, field_name)
#     ccount_html = gr.HTML(value=f"""
#     <div style="display: flex; justify-content: flex-end;">
#         <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span>
#         <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span>
#     </div>
# """)
#     return count_html
    
# def store_message(db,query,answer,cross_encoder):
#     timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
#     # Create a new document reference with a dynamic document name based on timestamp
#     new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}")
#     new_completion.set({
#         'query': query,
#         'answer':answer,
#         'created_time': firestore.SERVER_TIMESTAMP,
#         'embedding': cross_encoder,
#         'title': 'Expenditure observer bot'
#     })


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def bot(history, cross_encoder):
    top_rerank = 25
    top_k_rank = 20
    query = history[-1][0]

    if not query:
         gr.Warning("Please submit a non-empty string as a prompt")
         raise ValueError("Empty string was submitted")

    logger.warning('Retrieving documents...')
    
    # if COLBERT RAGATATOUILLE PROCEDURE  : 
    if cross_encoder=='(HIGH ACCURATE) ColBERT':
        gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
        RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        documents_full=RAG_db.search(query,k=top_k_rank)
        
        documents=[item['content'] for item in documents_full]
        # Create Prompt
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        generate_fn = generate_hf
    
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character
            yield history, prompt_html
        print('Final history is ',history)
        #store_message(db,history[-1][0],history[-1][1],cross_encoder)
    else:
        # Retrieve documents relevant to query
        document_start = perf_counter()
    
        query_vec = retriever.encode(query)
        logger.warning(f'Finished query vec')
        doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
        
    
        logger.warning(f'Finished search')
        documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
        documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
        logger.warning(f'start cross encoder {len(documents)}')
        # Retrieve documents relevant to query
        query_doc_pair = [[query, doc] for doc in documents]
        if cross_encoder=='(FAST) MiniLM-L6v2' :
               cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') 
        elif cross_encoder=='(ACCURATE) BGE reranker':
               cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
        cross_scores = cross_encoder1.predict(query_doc_pair)
        sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        logger.warning(f'Finished cross encoder {len(documents)}')
        
        documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        logger.warning(f'num documents {len(documents)}')
    
        document_time = perf_counter() - document_start
        logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
    
        # Create Prompt
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        generate_fn = generate_hf
    
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character            
            yield history, prompt_html
        print('Final history is ',history)
        #store_message(db,history[-1][0],history[-1][1],cross_encoder)

def system_instructions(question_difficulty, topic,documents_str):
    return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty  about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""


#with gr.Blocks(theme='Insuz/SimpleIndigo') as demo:
with gr.Blocks(theme='NoCrypt/miku') as CHATBOT:
    with gr.Row():
        with gr.Column(scale=10):
            # gr.Markdown(
            #     """
            #     # Theme preview: `paris`
            #     To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`.
            #     You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version
            #     of this theme.
            #     """
            # )
            gr.HTML(value="""<div style="color: #FF4500;"><h1>CHEERFULL CBSE-</h1> <h1><span style="color: #008000">AI Assisted Fun Learning</span></h1>
            </div>""", elem_id='heading')
        
            gr.HTML(value=f"""
            <p style="font-family: sans-serif; font-size: 16px;">
              A free Artificial Intelligence  Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry.
            </p>
            """, elem_id='Sub-heading')
            #usage_count = get_and_increment_value_count(db,collection_name, field_name)
            gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by K M Ramyasri , TGT,GHS.SUTHUKENY . Suggestions may be sent to <a href="mailto:ramyadevi1607@yahoo.com" style="color: #00008B; font-style: italic;">ramyadevi1607@yahoo.com</a>.</p>""", elem_id='Sub-heading1 ')

        with gr.Column(scale=3):
            gr.Image(value='logo.png',height=200,width=200)

    
#     gr.HTML(value="""<div style="color: #FF4500;"><h1>CHEERFULL CBSE-</h1> <h1><span style="color: #008000">AI Assisted Fun Learning</span></h1>
#     <img src='logo.png' alt="Chatbot" width="50" height="50" />
#     </div>""", elem_id='heading')

#     gr.HTML(value=f"""
#     <p style="font-family: sans-serif; font-size: 16px;">
#       A free Artificial Intelligence  Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry.
#     </p>
#     """, elem_id='Sub-heading')
#     #usage_count = get_and_increment_value_count(db,collection_name, field_name)
#     gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by K M Ramyasri , PGT . Suggestions may be sent to <a href="mailto:ramyadevi1607@yahoo.com" style="color: #00008B; font-style: italic;">ramyadevi1607@yahoo.com</a>.</p>""", elem_id='Sub-heading1 ')
# #     count_html = gr.HTML(value=f"""
# #     <div style="display: flex; justify-content: flex-end;">
# #         <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span>
# #         <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span>
# #     </div>
# # """)
   
    chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                           'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
            bubble_full_width=False,
            show_copy_button=True,
            show_share_button=True,
            )

    with gr.Row():
        txt = gr.Textbox(
                scale=3,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
                )
        txt_btn = gr.Button(value="Submit text", scale=1)

    cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)")

    prompt_html = gr.HTML()
    # Turn off interactivity while generating if you click
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Turn off interactivity while generating if you hit enter
    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Examples
    gr.Examples(examples, txt)


RAG_db=gr.State()

with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
    def load_model():
        RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        return 'Ready to Go!!'
    with gr.Column(scale=4):
        gr.HTML("""
    <center>
      <h1><span style="color: purple;">AI NANBAN</span> - CBSE Class Quiz Maker</h1>
      <h2>AI-powered Learning Game</h2>
      <i>⚠️ Students create quiz from any topic /CBSE Chapter ! ⚠️</i>
    </center>
    """)
        #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
    with gr.Column(scale=2):
        load_btn = gr.Button("Click to Load!🚀")
        load_text=gr.Textbox()
        load_btn.click(load_model,[],load_text)
        
   
    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic from CBSE notes")

    with gr.Row():
        radio = gr.Radio(
            ["easy", "average", "hard"], label="How difficult should the quiz be?"
        )


    generate_quiz_btn = gr.Button("Generate Quiz!🚀")
    quiz_msg=gr.Textbox()

    question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
        visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
        visible=False), gr.Radio(visible=False), gr.Radio(visible=False)]

    print(question_radios)

    @spaces.GPU
    @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz")
    def generate_quiz(question_difficulty, topic):
        top_k_rank=10
        RAG_db_=RAG_db.value
        documents_full=RAG_db_.search(topic,k=top_k_rank)
    
        

        generate_kwargs = dict(
            temperature=0.2,
            max_new_tokens=4000,
            top_p=0.95,
            repetition_penalty=1.0,
            do_sample=True,
            seed=42,
        )
        question_radio_list = []
        count=0
        while count<=3:
            try:
                documents=[item['content'] for item in documents_full]
                document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
                documents_str='\n'.join(document_summaries)
                formatted_prompt = system_instructions(
                    question_difficulty, topic,documents_str)
                print(formatted_prompt)
                pre_prompt = [
                    {"role": "system", "content": formatted_prompt}
                ]
                response = client.text_generation(
                    formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
                )
                output_json = json.loads(f"{response}")
                
        
                print(response)
                print('output json', output_json)
        
                global quiz_data
        
                quiz_data = output_json
        
                
        
                for question_num in range(1, 11):
                    question_key = f"Q{question_num}"
                    answer_key = f"A{question_num}"
        
                    question = quiz_data.get(question_key)
                    answer = quiz_data.get(quiz_data.get(answer_key))
        
                    if not question or not answer:
                        continue
        
                    choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
                    choice_list = []
                    for choice_key in choice_keys:
                        choice = quiz_data.get(choice_key, "Choice not found")
                        choice_list.append(f"{choice}")
        
                    radio = gr.Radio(choices=choice_list, label=question,
                                     visible=True, interactive=True)
        
                    question_radio_list.append(radio)
                if len(question_radio_list)==10:
                    break
                else:
                    print('10 questions not generated . So trying again!')
                    count+=1
                    continue
            except Exception as e:
                count+=1
                print(f"Exception occurred: {e}")
                if count==3:
                    print('Retry exhausted')
                    gr.Warning('Sorry. Pls try with another topic !')
                else:
                    print(f"Trying again..{count} time...please wait")
                    continue

        print('Question radio list ' , question_radio_list)

        return ['Quiz Generated!']+ question_radio_list

    check_button = gr.Button("Check Score")

    score_textbox = gr.Markdown()

    @check_button.click(inputs=question_radios, outputs=score_textbox)
    def compare_answers(*user_answers):
        user_anwser_list = []
        user_anwser_list = user_answers

        answers_list = []

        for question_num in range(1, 20):
            answer_key = f"A{question_num}"
            answer = quiz_data.get(quiz_data.get(answer_key))
            if not answer:
                break
            answers_list.append(answer)

        score = 0

        for item in user_anwser_list:
            if item in answers_list:
                score += 1
        if score>5:
             message = f"### Good ! You got {score} over 10!"
        elif score>7:
             message = f"### Excellent ! You got {score} over 10!"
        else:
             message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !"

        return message



demo = gr.TabbedInterface([CHATBOT,QUIZBOT], ["AI ChatBot", "AI Nanban-Quizbot"])

demo.queue()
demo.launch(debug=True)