Spaces:
Runtime error
Runtime error
File size: 6,097 Bytes
5a7a278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from pyvis.network import Network
from GoogleNews import GoogleNews
from newspaper import Article, ArticleException
import math
import torch
from kb import KB
import pickle
def extract_relations_from_model_output(text):
relations = []
relation, subject, relation, object_ = '', '', '', ''
text = text.strip()
current = 'x'
text_replaced = text.replace("<s>", "").replace("<pad>", "").replace("</s>", "")
for token in text_replaced.split():
if token == "<triplet>":
current = 't'
if relation != '':
relations.append({
'head': subject.strip(),
'type': relation.strip(),
'tail': object_.strip()
})
relation = ''
subject = ''
elif token == "<subj>":
current = 's'
if relation != '':
relations.append({
'head': subject.strip(),
'type': relation.strip(),
'tail': object_.strip()
})
object_ = ''
elif token == "<obj>":
current = 'o'
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
if subject != '' and relation != '' and object_ != '':
relations.append({
'head': subject.strip(),
'type': relation.strip(),
'tail': object_.strip()
})
return relations
def from_text_to_kb(text, model, tokenizer, article_url, span_length=128, article_title=None,
article_publish_date=None, verbose=False):
# tokenize whole text
inputs = tokenizer([text], return_tensors="pt")
# compute span boundaries
num_tokens = len(inputs["input_ids"][0])
if verbose:
print(f"Input has {num_tokens} tokens")
num_spans = math.ceil(num_tokens / span_length)
if verbose:
print(f"Input has {num_spans} spans")
overlap = math.ceil((num_spans * span_length - num_tokens) /
max(num_spans - 1, 1))
spans_boundaries = []
start = 0
for i in range(num_spans):
spans_boundaries.append([start + span_length * i,
start + span_length * (i + 1)])
start -= overlap
if verbose:
print(f"Span boundaries are {spans_boundaries}")
# transform input with spans
tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]]
for boundary in spans_boundaries]
tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]]
for boundary in spans_boundaries]
inputs = {
"input_ids": torch.stack(tensor_ids),
"attention_mask": torch.stack(tensor_masks)
}
# generate relations
num_return_sequences = 3
gen_kwargs = {
"max_length": 256,
"length_penalty": 0,
"num_beams": 3,
"num_return_sequences": num_return_sequences
}
generated_tokens = model.generate(
**inputs,
**gen_kwargs,
)
# decode relations
decoded_preds = tokenizer.batch_decode(generated_tokens,
skip_special_tokens=False)
# create kb
kb = KB()
i = 0
for sentence_pred in decoded_preds:
current_span_index = i // num_return_sequences
relations = extract_relations_from_model_output(sentence_pred)
for relation in relations:
relation["meta"] = {
article_url: {
"spans": [spans_boundaries[current_span_index]]
}
}
kb.add_relation(relation, article_title, article_publish_date)
i += 1
return kb
def get_article(url):
article = Article(url)
article.download()
article.parse()
return article
def from_url_to_kb(url, model, tokenizer):
article = get_article(url)
config = {
"article_title": article.title,
"article_publish_date": article.publish_date
}
kb = from_text_to_kb(article.text, model, tokenizer, article.url, **config)
return kb
def get_news_links(query, lang="en", region="US", pages=1):
googlenews = GoogleNews(lang=lang, region=region)
googlenews.search(query)
all_urls = []
for page in range(pages):
googlenews.get_page(page)
all_urls += googlenews.get_links()
return list(set(all_urls))
def from_urls_to_kb(urls, model, tokenizer, verbose=False):
kb = KB()
if verbose:
print(f"{len(urls)} links to visit")
for url in urls:
if verbose:
print(f"Visiting {url}...")
try:
kb_url = from_url_to_kb(url, model, tokenizer)
kb.merge_with_kb(kb_url)
except ArticleException:
if verbose:
print(f" Couldn't download article at url {url}")
return kb
def save_network_html(kb, filename="network.html"):
# create network
net = Network(directed=True, width="700px", height="700px")
# nodes
color_entity = "#00FF00"
for e in kb.entities:
net.add_node(e, shape="circle", color=color_entity)
# edges
for r in kb.relations:
net.add_edge(r["head"], r["tail"],
title=r["type"], label=r["type"])
# save network
net.repulsion(
node_distance=200,
central_gravity=0.2,
spring_length=200,
spring_strength=0.05,
damping=0.09
)
net.set_edge_smooth('dynamic')
net.show(filename)
def save_kb(kb, filename):
with open(filename, "wb") as f:
pickle.dump(kb, f)
class CustomUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if name == 'KB':
return KB
return super().find_class(module, name)
def load_kb(filename):
res = None
with open(filename, "rb") as f:
res = CustomUnpickler(f).load()
return res
|