Spaces:
Running
Running
File size: 15,387 Bytes
00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb 40b3207 00ed5fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from fastapi import FastAPI, Request
from typing import List
import gradio as gr
import requests
import argparse
import aiohttp
import uvicorn
import random
import string
import json
import math
import sys
import os
API_BASE = "env"
api_key = os.environ['OPENAI_API_KEY']
base_url = os.environ.get('OPENAI_BASE_URL', "https://api.openai.com/v1")
def_models = '["gpt-4", "gpt-4-0125-preview", "gpt-4-0613", "gpt-4-1106-preview", "gpt-4-turbo", "gpt-4-turbo-2024-04-09", "gpt-4-turbo-preview", "chatgpt-4o-latest", "gpt-4o", "gpt-4o-2024-05-13", "gpt-4o-2024-08-06", "gpt-4o-mini", "gpt-4o-mini-2024-07-18"]'
def checkModels():
global base_url
if API_BASE == "env":
try:
response = requests.get(f"{base_url}/models", headers={"Authorization": f"Bearer {get_api_key()}"})
response.raise_for_status()
if not ('data' in response.json()):
base_url = "https://api.openai.com/v1"
api_key = oai_api_key
except Exception as e:
print(f"Error testing API endpoint: {e}")
else:
base_url = "https://api.openai.com/v1"
api_key = oai_api_key
def loadModels():
global models, modelList
models = json.loads(def_models)
models = sorted(models)
modelList = {
"object": "list",
"data": [{"id": v, "object": "model", "created": 0, "owned_by": "system"} for v in models]
}
def handleApiKeys():
global api_key
if ',' in api_key:
output = []
for key in api_key.split(','):
try:
response = requests.get(f"{base_url}/models", headers={"Authorization": f"Bearer {key}"})
response.raise_for_status()
if ('data' in response.json()):
output.append(key)
except Exception as e:
print((F"API key {key} is not valid or an actuall error happend {e}"))
if len(output)==1:
raise RuntimeError("No API key is working")
api_key = ",".join(output)
else:
try:
response = requests.get(f"{base_url}/models", headers={"Authorization": f"Bearer {api_key}"})
response.raise_for_status()
if not ('data' in response.json()):
raise RuntimeError("Current API key is not valid")
except Exception as e:
raise RuntimeError(f"Current API key is not valid or an actual error happened: {e}")
def encodeChat(messages):
output = []
for message in messages:
role = message['role']
name = f" [{message['name']}]" if 'name' in message else ''
content = message['content']
formatted_message = f"<|im_start|>{role}{name}\n{content}<|end_of_text|>"
output.append(formatted_message)
return "\n".join(output)
def get_api_key(call='api_key'):
if call == 'api_key':
key = api_key
elif call == 'oai_api_key':
key = oai_api_key
else:
key = api_key
if ',' in key:
return random.choice(key.split(','))
return key
def moderate(messages):
try:
response = requests.post(
f"{base_url}/moderations",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {get_api_key(call='api_key')}"
},
json={"input": encodeChat(messages)}
)
response.raise_for_status()
moderation_result = response.json()
except requests.exceptions.RequestException as e:
print(f"Error during moderation request to {base_url}: {e}")
try:
response = requests.post(
"https://api.openai.com/v1/moderations",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {get_api_key(call='oai_api_key')}"
},
json={"input": encodeChat(messages)}
)
response.raise_for_status()
moderation_result = response.json()
except requests.exceptions.RequestException as e:
print(f"Error during moderation request to fallback URL: {e}")
return False
try:
if any(result["flagged"] for result in moderation_result["results"]):
return moderation_result
except KeyError:
if moderation_result["flagged"]:
return moderation_result
return False
async def streamChat(params):
async with aiohttp.ClientSession() as session:
try:
async with session.post(f"{base_url}/chat/completions", headers={"Authorization": f"Bearer {get_api_key(call='api_key')}", "Content-Type": "application/json"}, json=params) as r:
r.raise_for_status()
async for line in r.content:
if line:
line_str = line.decode('utf-8')
if line_str.startswith("data: "):
line_str = line_str[6:].strip()
if line_str == "[DONE]":
continue
try:
message = json.loads(line_str)
yield message
except json.JSONDecodeError:
continue
except aiohttp.ClientError:
try:
async with session.post("https://api.openai.com/v1/chat/completions", headers={"Authorization": f"Bearer {get_api_key(call='oai_api_key')}", "Content-Type": "application/json"}, json=params) as r:
r.raise_for_status()
async for line in r.content:
if line:
line_str = line.decode('utf-8')
if line_str.startswith("data: "):
line_str = line_str[6:].strip()
if line_str == "[DONE]":
continue
try:
message = json.loads(line_str)
yield message
except json.JSONDecodeError:
continue
except aiohttp.ClientError:
return
def rnd(length=8):
letters = string.ascii_letters + string.digits
return ''.join(random.choice(letters) for i in range(length))
async def respond(
message,
history: list[tuple[str, str]],
model_name,
max_tokens,
temperature,
top_p,
):
messages = [];
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
if message:
mode = moderate(messages)
if mode:
reasons = []
categories = mode[0].get('categories', {}) if isinstance(mode, list) else mode.get('categories', {})
for category, flagged in categories.items():
if flagged:
reasons.append(category)
if reasons:
yield "[MODERATION] I'm sorry, but I can't assist with that.\n\nReasons:\n```\n" + "\n".join([f"{i+1}. {reason}" for i, reason in enumerate(reasons)]) + "\n```"
else:
yield "[MODERATION] I'm sorry, but I can't assist with that."
return
async def handleResponse(completion, prefix="", image_count=0, didSearchedAlready=False):
response = ""
isRequeryNeeded = False
async for token in completion:
response += token['choices'][0]['delta'].get("content", token['choices'][0]['delta'].get("refusal", ""))
yield f"{prefix}{response}"
mode = moderate([handleMultimodalData(model_name, "user", message),{"role": "assistant", "content": response}])
if mode:
reasons = []
categories = mode[0].get('categories', {}) if isinstance(mode, list) else mode.get('categories', {})
for category, flagged in categories.items():
if flagged:
reasons.append(category)
if reasons:
yield "[MODERATION] I'm sorry, but I can't assist with that.\n\nReasons:\n```\n" + "\n".join([f"{i+1}. {reason}" for i, reason in enumerate(reasons)]) + "\n```"
else:
yield "[MODERATION] I'm sorry, but I can't assist with that."
return
for line in response.split('\n'):
try:
data = json.loads(line)
if isinstance(data, dict) and data.get("tool") == "imagine" and data.get("isCall") and "prompt" in data:
if image_count < 4:
image_count += 1
def fetch_image_url(prompt, line):
image_url = imagine(prompt)
return line, f'<img src="{image_url}" alt="{prompt}" width="512"/>'
def replace_line_in_response(line, replacement):
nonlocal response
response = response.replace(line, replacement)
thread = threading.Thread(target=lambda: replace_line_in_response(*fetch_image_url(data["prompt"], line)))
thread.start()
thread.join()
else:
response = response.replace(line, f'[System: 4 image per message limit; prompt asked: `{data["prompt"]}]`')
yield f"{prefix}{response}"
elif isinstance(data, dict) and data.get("tool") == "calc" and data.get("isCall") and "prompt" in data:
isRequeryNeeded = True
try:
result = safe_eval(data["prompt"])
response = response.replace(line, f'[System: `{data["prompt"]}` === `{result}`]')
except Exception as e:
response = response.replace(line, f'[System: Error in calculation; `{e}`]')
yield f"{prefix}{response}"
elif isinstance(data, dict) and data.get("tool") == "search" and data.get("isCall") and "prompt" in data:
isRequeryNeeded = True
if didSearchedAlready:
response = response.replace(line, f'[System: One search per response is allowed; due to how long and resource it takes; query: `{data["prompt"]}]`]')
else:
try:
result = searchEngine(data["prompt"])
result_escaped = result.replace('`', '\\`')
response = response.replace(line, f'[System: `{data["prompt"]}` ===\n```\n{result_escaped}\n```\n]')
didSearchedAlready = True
except Exception as e:
response = response.replace(line, f'[System: Error in search function; `{e}`]')
yield f"{prefix}{response}"
yield f"{prefix}{response}"
except (json.JSONDecodeError, AttributeError, Exception):
continue
if isRequeryNeeded:
messages.append({"role": "assistant", "content": response})
async for res in handleResponse(streamChat({
"model": model_name,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"user": rnd(),
"stream": True
}), f"{prefix}{response}\n\n", image_count, didSearchedAlready):
yield res
async for res in handleResponse(streamChat({
"model": model_name,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"user": rnd(),
"stream": True
})):
yield res
handleApiKeys();loadModels();checkModels();
demo = gr.ChatInterface(
respond,
title="gpt-4o-mini-small",
description=f"This is the smaller version of quardo/gpt-4o-small space.<br/>Mainly exists when the main space is down.",
additional_inputs=[
gr.Dropdown(choices=models, value="gpt-4o-mini", label="Model"),
gr.Slider(minimum=1, maximum=4096, value=4096, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature"),
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
css="footer{display:none !important}",
head="""<script>if(!confirm("By using our application, which integrates with OpenAI's API, you acknowledge and agree to the following terms regarding the data you provide:\\n\\n1. Data Collection: This application may log the following data through the Gradio endpoint or the API endpoint: message requests (including messages, responses, model settings, and images sent along with the messages), images that were generated (including only the prompt and the image), search tool calls (including query, search results, summaries, and output responses), and moderation checks (including input and output).\\n2. Data Retention and Removal: Data is retained until further notice or until a specific request for removal is made.\\n3. Data Usage: The collected data may be used for various purposes, including but not limited to, administrative review of logs, AI training, and publication as a dataset.\\n4. Privacy: Please avoid sharing any personal information.\\n\\nBy continuing to use our application, you explicitly consent to the collection, use, and potential sharing of your data as described above. If you disagree with our data collection, usage, and sharing practices, we advise you not to use our application."))location.href="/declined";</script>"""
)
app = FastAPI()
@app.get("/declined")
def test():
return HTMLResponse(content="""
<html>
<head>
<title>Declined</title>
</head>
<body>
<p>Ok, you can go back to Hugging Face. I just didn't have any idea how to handle decline so you are redirected here.</p><br/>
<a href="/">Go back</button>
</body>
</html>
""")
app = gr.mount_gradio_app(app, demo, path="/")
class ArgParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(ArgParser, self).__init__(*args, **kwargs)
self.add_argument("-s", "--server", type=str, default="0.0.0.0")
self.add_argument("-p", "--port", type=int, default=7860)
self.add_argument("-d", "--dev", default=False, action="store_true")
self.args = self.parse_args(sys.argv[1:])
if __name__ == "__main__":
args = ArgParser().args
if args.dev:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
else:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)
|