Spaces:
Runtime error
Runtime error
File size: 10,345 Bytes
9d1e12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import os
import json
import requests
prompt_templates = {"默认ChatGPT": ""}
# Streaming endpoint
# API_URL = "https://api.openai.com/v1/chat/completions" # os.getenv("API_URL") + "/generate_stream"
OPENAI_URL = "https://api.openai.com/v1/chat/completions" # os.getenv("API_URL") + "/generate_stream"
API2D_URL = "https://openai.api2d.net/v1/chat/completions" # os.getenv("API_URL") + "/generate_stream"
convo_id = 'default'
#5c72c157a8fd54357bd13112cd71952a
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
if prompt_template:
return prompt_templates[prompt_template]
else:
''
def get_empty_state():
return {"total_tokens": 0, "messages": []}
def get_prompt_templates():
with open('./prompts_zh.json','r',encoding='utf8') as fp:
json_data = json.load(fp)
for data in json_data:
act = data['act']
prompt = data['prompt']
prompt_templates[act] = prompt
# reader = csv.reader(csv_file)
# next(reader) # skip the header row
# for row in reader:
# if len(row) >= 2:
# act = row[0].strip('"')
# prompt = row[1].strip('"')
# prompt_templates[act] = prompt
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
# Testing with my Open AI Key
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def predict(inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot=[],
history=[]): # repetition_penalty, top_k
print(openai_api_key)
if openai_api_key.startswith('sk-'):
API_URL = OPENAI_URL
print(1)
elif openai_api_key.startswith('fk'):
API_URL = API2D_URL
print(2)
else:
API_URL = OPENAI_URL
print(3)
if inputs==None:
inputs = ''
if prompt_template:
prompt_template = prompt_templates[prompt_template]
else:
prompt_template = ""
# system_prompt = []
# if prompt_template:
# history = [{"role": "system", "content": prompt_template}]
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "system", "content": prompt_template},{"role": "user", "content": f"{inputs}"}],
"temperature": 1.0,
"top_p": 1.0,
"n": 1,
"stream": True,
"presence_penalty": 0,
"frequency_penalty": 0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
# print(f"chat_counter - {chat_counter}")
if chat_counter != 0:
messages = []
# print(chatbot)
# print(chatbot[-context_length:])
# print(context_length)
for data in chatbot[-context_length:]:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
# print(messages)
# messages
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "system", "content": prompt_template}]+messages, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"n": 1,
"stream": True,
"presence_penalty": 0,
"frequency_penalty": 0,
}
history.append(inputs)
# print(f"payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
# print('payload',payload)
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
# print('response', response)
# print('content',response.content)
# print('text', response.text)
if response.status_code != 200:
try:
payload['id'] = response.content['id']
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
if response.status_code != 200:
payload['id'] = response.content['id']
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
except:
pass
# print('status_code', response.status_code)
# response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter = 0
if response.status_code==200:
chat_counter += 1
# print('chunk')
for chunk in response.iter_lines():
# Skipping first chunk
if counter == 0:
counter += 1
continue
# check whether each line is non-empty
chunk = chunk.decode("utf-8")[6:]
if chunk:
# print(chunk)
if chunk=='[DONE]':
break
resp: dict = json.loads(chunk)
choices = resp.get("choices")
if not choices:
continue
delta = choices[0].get("delta")
if not delta:
continue
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in resp['choices'][0]['delta']:
# if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# break
partial_words = partial_words + resp['choices'][0]["delta"]["content"]
# print(partial_words)
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in
range(0, len(history) - 1, 2)] # convert to tuples of list
# print(chat)
token_counter += 1
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
else:
chat = [(history[i], history[i + 1]) for i in
range(0, len(history) - 1, 2)] # convert to tuples of list
chat.append((inputs, "OpenAI服务器网络出现错误,请重试,或重启对话"))
token_counter += 1
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
# yield ['OpenAI服务器网络出现错误'], ['OpenAI服务器网络出现错误'], gr.update(value=0)
def reset_textbox():
return gr.update(value='')
def clear_conversation(chatbot):
return gr.update(value=None, visible=True), [], [], gr.update(value=0)
title = """<h1 align="center">🔥覃秉丰的ChatGPT🔥</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
with gr.Blocks(css="""#col_container {width: 800px; margin-left: auto; margin-right: auto;}
#chatbot {height: 500px; overflow: auto;}
#inputs {font-size: 20px;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}""") as demo:
gr.HTML(title)
# gr.HTML(
# '''<center><a href="https://huggingface.co/spaces/QinBingFeng/chatgpt?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>点击图标复制App</center>''')
with gr.Column(elem_id="col_container"):
openai_api_key = gr.Textbox(type='password', label="输入你的API Key",placeholder="OpenAI API Key 或者 API2D")
chatbot = gr.Chatbot(elem_id='chatbot') # c
inputs = gr.Textbox(show_label=False, placeholder="在这里输入内容",elem_id="inputs",value='') # t
state = gr.State([]) # s
# state = gr.State(get_empty_state())
b1 = gr.Button("提交")
btn_clear_conversation = gr.Button("🔃 开启新的对话")
# inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("高级设置", open=False):
context_length = gr.Slider(minimum=1, maximum=6, value=2, step=1, label="对话长度",
info="关联之前的几轮对话,数值越高tokens消耗越多")
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Temperature",
info="数值越高创造性越强")
prompt_template = gr.Dropdown(label="选择机器人类型",
choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
# top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
# repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
chat_counter = gr.Number(value=0, visible=False, precision=0)
inputs.submit(predict, [inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot, state],
[chatbot, state, chat_counter], )
b1.click(predict, [inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot, state],
[chatbot, state, chat_counter], )
b1.click(reset_textbox, [], [inputs])
btn_clear_conversation.click(clear_conversation, [], [inputs, chatbot, state, chat_counter])
inputs.submit(reset_textbox, [], [inputs])
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(get_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
# gr.Markdown(description)
demo.queue(concurrency_count=10)
demo.launch(debug=True) |