File size: 17,016 Bytes
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import scipy
import skimage
from skimage import feature
import numpy as np
import matplotlib.pyplot as plt
from skimage.color import label2rgb
from skimage.segmentation import mark_boundaries

import os
import sys
import platform
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # cytof root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
from segmentation_functions import generate_mask, normalize

# from cytof.segmentation_functions import generate_mask, normalize


def cytof_nuclei_segmentation(im_nuclei, show_process=False, size_hole=50, size_obj=7,
                              start_coords=(0, 0), side=100, colors=[], min_distance=2,
                              fg_marker_dilate=2, bg_marker_dilate=2
                              ):
    """ Segment nuclei based on the input nuclei image

    Inputs:
        im_nuclei    = raw cytof image correspond to nuclei, size=(h, w)
        show_process = flag of whether show the process  (default=False)
        size_hole    = size of the hole to be removed (default=50)
        size_obj     = size of the small objects to be removed (default=7)
        start_coords = the starting (x,y) coordinates of visualizing process (default=(0,0))
        side         = the side length of visualizing process (default=100)
        colors       = a list of colors used to visualize segmentation results (default=[])
    Returns:
        labels = nuclei segmentation result, where background is represented by 1, size=(h, w)
        colors = the list of colors used to visualize segmentation results

    :param im_nuclei: numpy.ndarray
    :param show_process: bool
    :param size_hole: int
    :param size_obj: int
    :param start_coords: int
    :return labels: numpy.ndarray
    :return colors: list
    """

    if len(colors) == 0:
        cmap_set3 = plt.get_cmap("Set3")
        cmap_tab20c = plt.get_cmap("tab20c")
        colors = [cmap_tab20c.colors[_] for _ in range(len(cmap_tab20c.colors))] + \
                 [cmap_set3.colors[_] for _ in range(len(cmap_set3.colors))]

    x0, y0 = start_coords
    mask = generate_mask(np.clip(im_nuclei, 0, np.quantile(im_nuclei, 0.95)), fill_hole=False, use_watershed=False)
    mask = skimage.morphology.remove_small_holes(mask.astype(bool), size_hole)
    mask = skimage.morphology.remove_small_objects(mask.astype(bool), size_obj)
    if show_process:
        plt.figure(figsize=(4, 4))
        plt.imshow(mask[x0:x0 + side, y0:y0 + side], cmap='gray')
        plt.show()

    # Find and count local maxima
    distance = scipy.ndimage.distance_transform_edt(mask)
    distance = scipy.ndimage.gaussian_filter(distance, 1)
    local_maxi_idx = skimage.feature.peak_local_max(distance, exclude_border=False, min_distance=min_distance,
                                                    labels=None)
    local_maxi = np.zeros_like(distance, dtype=bool)
    local_maxi[tuple(local_maxi_idx.T)] = True
    markers = scipy.ndimage.label(local_maxi)[0]
    markers = markers > 0
    markers = skimage.morphology.dilation(markers, skimage.morphology.disk(fg_marker_dilate))
    markers = skimage.morphology.label(markers)
    markers[markers > 0] = markers[markers > 0] + 1
    markers = markers + skimage.morphology.erosion(1 - mask, skimage.morphology.disk(bg_marker_dilate))

    # Another watershed
    temp_im = skimage.util.img_as_ubyte(normalize(np.clip(im_nuclei, 0, np.quantile(im_nuclei, 0.95))))
    gradient = skimage.filters.rank.gradient(temp_im, skimage.morphology.disk(3))
    # gradient = skimage.filters.rank.gradient(normalize(np.clip(im_nuclei, 0, np.quantile(im_nuclei, 0.95))),
    #                                          skimage.morphology.disk(3))
    labels = skimage.segmentation.watershed(gradient, markers)
    labels = skimage.morphology.closing(labels)
    labels_rgb = label2rgb(labels, bg_label=1, colors=colors)
    labels_rgb[labels == 1, ...] = (0, 0, 0)

    if show_process:
        fig, axes = plt.subplots(3, 2, figsize=(8, 12), sharex=False, sharey=False)
        ax = axes.ravel()
        ax[0].set_title("original grayscale")
        ax[0].imshow(np.clip(im_nuclei[x0:x0 + side, y0:y0 + side], 0, np.quantile(im_nuclei, 0.95)),
                     interpolation='nearest')
        ax[1].set_title("markers")
        ax[1].imshow(label2rgb(markers[x0:x0 + side, y0:y0 + side], bg_label=1, colors=colors),
                     interpolation='nearest')
        ax[2].set_title("distance")
        ax[2].imshow(-distance[x0:x0 + side, y0:y0 + side], cmap=plt.cm.nipy_spectral, interpolation='nearest')
        ax[3].set_title("gradient")
        ax[3].imshow(gradient[x0:x0 + side, y0:y0 + side], interpolation='nearest')
        ax[4].set_title("Watershed Labels")
        ax[4].imshow(labels_rgb[x0:x0 + side, y0:y0 + side, :], interpolation='nearest')
        ax[5].set_title("Watershed Labels")
        ax[5].imshow(labels_rgb, interpolation='nearest')
        plt.show()

    return labels, colors


def cytof_cell_segmentation(nuclei_seg, radius=5, membrane_channel=None, show_process=False,
                            start_coords=(0, 0), side=100, colors=[]):
    """ Cell segmentation based on nuclei segmentation; membrane-guided cell segmentation if membrane_channel provided.
    Inputs:
        nuclei_seg       = an index image containing nuclei instance segmentation information, where the background is
                           represented by 1, size=(h,w). Typically, the output of calling the cytof_nuclei_segmentation
                           function.
        radius           = assumed radius of cells (default=5)
        membrane_channel = membrane image channel of original cytof image (default=None)
        show_process     = a flag indicating whether or not showing the segmentation process (default=False)
        start_coords     = the starting (x,y) coordinates of visualizing process (default=(0,0))
        side             = the side length of visualizing process (default=100)
        colors           = a list of colors used to visualize segmentation results (default=[])
    Returns:
        labels = an index image containing cell instance segmentation information, where the background is
                           represented by 1
        colors = the list of colors used to visualize segmentation results

    :param nuclei_seg: numpy.ndarray
    :param radius: int
    :param membrane_channel: numpy.ndarray
    :param show_process: bool
    :param start_coords: tuple
    :param side: int
    :return labels: numpy.ndarray
    :return colors: list
    """

    if len(colors) == 0:
        cmap_set3 = plt.get_cmap("Set3")
        cmap_tab20c = plt.get_cmap("tab20c")
        colors = [cmap_tab20c.colors[_] for _ in range(len(cmap_tab20c.colors))] + \
            [cmap_set3.colors[_] for _ in range(len(cmap_set3.colors))]

    x0, y0 = start_coords

    ## nuclei segmentation -> nuclei mask
    nuclei_mask = nuclei_seg > 1
    if show_process:
        nuclei_bg = nuclei_seg.min()
        fig, ax = plt.subplots(1, 2, figsize=(8, 4))
        nuclei_seg_vis = label2rgb(nuclei_seg[x0:x0 + side, y0:y0 + side], bg_label=nuclei_bg, colors=colors)
        nuclei_seg_vis[nuclei_seg[x0:x0 + side, y0:y0 + side] == nuclei_bg, ...] = (0, 0, 0)

        ax[0].imshow(nuclei_seg_vis), ax[0].set_title('nuclei segmentation')
        ax[1].imshow(nuclei_mask[x0:x0 + side, y0:y0 + side], cmap='gray'), ax[1].set_title('nuclei mask')

    if membrane_channel is not None:
        membrane_mask = generate_mask(np.clip(membrane_channel, 0, np.quantile(membrane_channel, 0.95)),
                                      fill_hole=False, use_watershed=False)
        if show_process:
            # visualize
            nuclei_membrane = np.zeros((membrane_mask.shape[0], membrane_mask.shape[1], 3), dtype=np.uint8)
            nuclei_membrane[..., 0] = nuclei_mask * 255
            nuclei_membrane[..., 1] = membrane_mask

            fig, ax = plt.subplots(1, 2, figsize=(8, 4))
            ax[0].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray'), ax[0].set_title('membrane mask')
            ax[1].imshow(nuclei_membrane[x0:x0 + side, y0:y0 + side]), ax[1].set_title('nuclei - membrane')

        # postprocess raw membrane mask
        membrane_mask_close = skimage.morphology.closing(membrane_mask, skimage.morphology.disk(1))
        membrane_mask_open  = skimage.morphology.opening(membrane_mask_close, skimage.morphology.disk(1))
        membrane_mask_erode = skimage.morphology.erosion(membrane_mask_open, skimage.morphology.disk(3))

        # Find skeleton
        membrane_for_skeleton = (membrane_mask_open > 0) & (nuclei_mask == False)
        membrane_skeleton = skimage.morphology.skeletonize(membrane_for_skeleton)
        '''print(membrane_skeleton)
        print(membrane_mask_erode)'''
        membrane_mask = membrane_mask_erode
        membrane_mask_2 = (membrane_mask_erode > 0) | membrane_skeleton

        if show_process:
            fig, axs = plt.subplots(1, 4, figsize=(16, 4))
            axs[0].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[0].set_title('raw membrane mask')
            axs[1].imshow(membrane_mask_close[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[1].set_title('membrane mask - closed')
            axs[2].imshow(membrane_mask_open[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[2].set_title('membrane mask -  opened')
            axs[3].imshow(membrane_mask_erode[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[3].set_title('membrane mask - erosion')
            plt.show()

            fig, axs = plt.subplots(1, 3, figsize=(12, 4))
            axs[0].imshow(membrane_skeleton[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[0].set_title('skeleton')
            axs[1].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[1].set_title('membrane mask (final)')
            axs[2].imshow(membrane_mask_2[x0:x0 + side, y0:y0 + side], cmap='gray')
            axs[2].set_title('membrane mask 2')
            plt.show()

            # overlap and visualize
            nuclei_membrane = np.zeros((membrane_mask.shape[0], membrane_mask.shape[1], 3), dtype=np.uint8)
            nuclei_membrane[..., 0] = nuclei_mask * 255
            nuclei_membrane[..., 1] = membrane_mask
            fig, ax = plt.subplots(1, 2, figsize=(8, 4))
            ax[0].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray'), ax[0].set_title('membrane mask')
            ax[1].imshow(nuclei_membrane[x0:x0 + side, y0:y0 + side]), ax[1].set_title('nuclei - membrane')

    # dilate nuclei mask by radius
    dilate_nuclei_mask = skimage.morphology.dilation(nuclei_mask, skimage.morphology.disk(radius))
    if show_process:
        fig, axs = plt.subplots(1, 3, figsize=(12, 4))
        axs[0].imshow(nuclei_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
        axs[0].set_title('nuclei mask')
        axs[1].imshow(dilate_nuclei_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
        axs[1].set_title('dilated nuclei mask')
        if membrane_channel is not None:
            axs[2].imshow(membrane_mask[x0:x0 + side, y0:y0 + side] > 0, cmap='gray')
            axs[2].set_title('membrane mask')

    # define sure foreground, sure background, and unknown region
    sure_fg = nuclei_mask.copy()  # nuclei mask defines sure foreground

    # dark region in dilated nuclei mask (dilate_nuclei_mask == False) OR bright region in cell mask (cell_mask > 0)
    # defines sure background
    if membrane_channel is not None:
        sure_bg  = ((membrane_mask > 0) | (dilate_nuclei_mask == False)) & (sure_fg == False)
        sure_bg2 = ((membrane_mask_2 > 0) | (dilate_nuclei_mask == False)) & (sure_fg == False)
    else:
        sure_bg =  (dilate_nuclei_mask == False) & (sure_fg == False)

    unknown = np.logical_not(np.logical_or(sure_fg, sure_bg))

    if show_process:
        fig, axs = plt.subplots(1, 4, figsize=(16, 4))
        axs[0].imshow(sure_fg[x0:x0 + side, y0:y0 + side], cmap='gray')
        axs[0].set_title('sure fg')
        axs[1].imshow(sure_bg[x0:x0 + side, y0:y0 + side], cmap='gray')
        if membrane_channel is not None:
            axs[1].set_title('sure bg: membrane | not (dilated nuclei)')
        else:
            axs[1].set_title('sure bg: not (dilated nuclei)')
        axs[2].imshow(unknown[x0:x0 + side, y0:y0 + side], cmap='gray')
        axs[2].set_title('unknown')

        # visualize in a RGB image
        fg_bg_un = np.zeros((unknown.shape[0], unknown.shape[1], 3), dtype=np.uint8)
        fg_bg_un[..., 0] = sure_fg * 255  # sure foreground - red
        fg_bg_un[..., 1] = sure_bg * 255  # sure background - green
        fg_bg_un[..., 2] = unknown * 255  # unknown - blue
        axs[3].imshow(fg_bg_un[x0:x0 + side, y0:y0 + side])
        plt.show()

    ## Euclidean distance transform: distance to the closest zero pixel for each pixel of the input image.
    if membrane_channel is not None:
        distance_bg = -scipy.ndimage.distance_transform_edt(1 - sure_bg2)
        distance_fg = scipy.ndimage.distance_transform_edt(1 - sure_fg)
        distance = distance_bg+distance_fg
    else:
        distance = scipy.ndimage.distance_transform_edt(1 - sure_fg)
    distance = scipy.ndimage.gaussian_filter(distance, 1)

    # watershed
    markers = nuclei_seg.copy()
    markers[unknown] = 0
    if show_process:
        fig, axs = plt.subplots(1, 2, figsize=(8, 4))
        axs[0].set_title("markers")
        axs[0].imshow(label2rgb(markers[x0:x0 + side, y0:y0 + side], bg_label=1, colors=colors),
                     interpolation='nearest')
        axs[1].set_title("distance")
        im = axs[1].imshow(distance[x0:x0 + side, y0:y0 + side], cmap=plt.cm.nipy_spectral, interpolation='nearest')
        plt.colorbar(im, ax=axs[1])
    labels = skimage.segmentation.watershed(distance, markers)
    if show_process:
        fig, axs = plt.subplots(1, 4, figsize=(16, 4))
        axs[0].imshow(unknown[x0:x0 + side, y0:y0 + side])
        axs[0].set_title('cytoplasm')  # , cmap=cmap, interpolation='nearest'

        nuclei_lb = label2rgb(nuclei_seg, bg_label=1, colors=colors)
        nuclei_lb[nuclei_seg == 1, ...] = (0, 0, 0)
        axs[1].imshow(nuclei_lb)  # , cmap=cmap, interpolation='nearest')
        axs[1].set_xlim(x0, x0 + side - 1), axs[1].set_ylim(y0 + side - 1, y0)
        axs[1].set_title('nuclei')

        cell_lb = label2rgb(labels, bg_label=1, colors=colors)
        cell_lb[labels == 1, ...] = (0, 0, 0)
        axs[2].imshow(cell_lb)  # , cmap=cmap, interpolation='nearest')
        axs[2].set_title('cells')
        axs[2].set_xlim(x0, x0 + side - 1), axs[2].set_ylim(y0 + side - 1, y0)

        merge_lb = cell_lb.copy()
        merge_lb = cell_lb ** 2
        merge_lb[nuclei_mask == 1, ...] = np.clip(nuclei_lb[nuclei_mask == 1, ...].astype(float) * 1.2, 0, 1)
        axs[3].imshow(merge_lb)
        axs[3].set_title('nuclei-cells')
        axs[3].set_xlim(x0, x0 + side - 1), axs[3].set_ylim(y0 + side - 1, y0)
        plt.show()
    return labels, colors


def visualize_segmentation(raw_image, channels, seg, channel_ids, bound_color=(1, 1, 1), bound_mode='inner', show=True, bg_label=0):

    """ Visualize segmentation results with boundaries
    Inputs:
        raw_image   = raw cytof image
        channels    = a list of channels correspond to each channel in raw_image
        seg         = instance segmentation result (index image)
        channel_ids = indices of desired channels to visualize results
        bound_color = desired color in RGB to show boundaries (default=(1,1,1), white color)
        bound_mode  = the mode for finding boundaries, string in {‘thick’, ‘inner’, ‘outer’, ‘subpixel’}.
                      (default="inner"). For more details, see
                      [skimage.segmentation.mark_boundaries](https://scikit-image.org/docs/stable/api/skimage.segmentation.html)
        show        = a flag indicating whether or not print result image on screen
    Returns:
        marked_image
    :param raw_image: numpy.ndarray
    :param seg: numpy.ndarray
    :param channel_ids: int
    :param bound_color: tuple
    :param bound_mode: string
    :param show: bool
    :return marked_image
    """
    from cytof.hyperion_preprocess import cytof_merge_channels

    # mark_boundaries() highight the segmented area for better visualization
    # ref: https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.mark_boundaries
    marked_image = mark_boundaries(cytof_merge_channels(raw_image, channels, channel_ids)[0],
                                   seg, mode=bound_mode, color=bound_color, background_label=bg_label)
    if show:
        plt.figure(figsize=(8,8))
        plt.imshow(marked_image)
        plt.show()
    return marked_image