File size: 17,016 Bytes
b78c3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import scipy
import skimage
from skimage import feature
import numpy as np
import matplotlib.pyplot as plt
from skimage.color import label2rgb
from skimage.segmentation import mark_boundaries
import os
import sys
import platform
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # cytof root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != 'Windows':
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from segmentation_functions import generate_mask, normalize
# from cytof.segmentation_functions import generate_mask, normalize
def cytof_nuclei_segmentation(im_nuclei, show_process=False, size_hole=50, size_obj=7,
start_coords=(0, 0), side=100, colors=[], min_distance=2,
fg_marker_dilate=2, bg_marker_dilate=2
):
""" Segment nuclei based on the input nuclei image
Inputs:
im_nuclei = raw cytof image correspond to nuclei, size=(h, w)
show_process = flag of whether show the process (default=False)
size_hole = size of the hole to be removed (default=50)
size_obj = size of the small objects to be removed (default=7)
start_coords = the starting (x,y) coordinates of visualizing process (default=(0,0))
side = the side length of visualizing process (default=100)
colors = a list of colors used to visualize segmentation results (default=[])
Returns:
labels = nuclei segmentation result, where background is represented by 1, size=(h, w)
colors = the list of colors used to visualize segmentation results
:param im_nuclei: numpy.ndarray
:param show_process: bool
:param size_hole: int
:param size_obj: int
:param start_coords: int
:return labels: numpy.ndarray
:return colors: list
"""
if len(colors) == 0:
cmap_set3 = plt.get_cmap("Set3")
cmap_tab20c = plt.get_cmap("tab20c")
colors = [cmap_tab20c.colors[_] for _ in range(len(cmap_tab20c.colors))] + \
[cmap_set3.colors[_] for _ in range(len(cmap_set3.colors))]
x0, y0 = start_coords
mask = generate_mask(np.clip(im_nuclei, 0, np.quantile(im_nuclei, 0.95)), fill_hole=False, use_watershed=False)
mask = skimage.morphology.remove_small_holes(mask.astype(bool), size_hole)
mask = skimage.morphology.remove_small_objects(mask.astype(bool), size_obj)
if show_process:
plt.figure(figsize=(4, 4))
plt.imshow(mask[x0:x0 + side, y0:y0 + side], cmap='gray')
plt.show()
# Find and count local maxima
distance = scipy.ndimage.distance_transform_edt(mask)
distance = scipy.ndimage.gaussian_filter(distance, 1)
local_maxi_idx = skimage.feature.peak_local_max(distance, exclude_border=False, min_distance=min_distance,
labels=None)
local_maxi = np.zeros_like(distance, dtype=bool)
local_maxi[tuple(local_maxi_idx.T)] = True
markers = scipy.ndimage.label(local_maxi)[0]
markers = markers > 0
markers = skimage.morphology.dilation(markers, skimage.morphology.disk(fg_marker_dilate))
markers = skimage.morphology.label(markers)
markers[markers > 0] = markers[markers > 0] + 1
markers = markers + skimage.morphology.erosion(1 - mask, skimage.morphology.disk(bg_marker_dilate))
# Another watershed
temp_im = skimage.util.img_as_ubyte(normalize(np.clip(im_nuclei, 0, np.quantile(im_nuclei, 0.95))))
gradient = skimage.filters.rank.gradient(temp_im, skimage.morphology.disk(3))
# gradient = skimage.filters.rank.gradient(normalize(np.clip(im_nuclei, 0, np.quantile(im_nuclei, 0.95))),
# skimage.morphology.disk(3))
labels = skimage.segmentation.watershed(gradient, markers)
labels = skimage.morphology.closing(labels)
labels_rgb = label2rgb(labels, bg_label=1, colors=colors)
labels_rgb[labels == 1, ...] = (0, 0, 0)
if show_process:
fig, axes = plt.subplots(3, 2, figsize=(8, 12), sharex=False, sharey=False)
ax = axes.ravel()
ax[0].set_title("original grayscale")
ax[0].imshow(np.clip(im_nuclei[x0:x0 + side, y0:y0 + side], 0, np.quantile(im_nuclei, 0.95)),
interpolation='nearest')
ax[1].set_title("markers")
ax[1].imshow(label2rgb(markers[x0:x0 + side, y0:y0 + side], bg_label=1, colors=colors),
interpolation='nearest')
ax[2].set_title("distance")
ax[2].imshow(-distance[x0:x0 + side, y0:y0 + side], cmap=plt.cm.nipy_spectral, interpolation='nearest')
ax[3].set_title("gradient")
ax[3].imshow(gradient[x0:x0 + side, y0:y0 + side], interpolation='nearest')
ax[4].set_title("Watershed Labels")
ax[4].imshow(labels_rgb[x0:x0 + side, y0:y0 + side, :], interpolation='nearest')
ax[5].set_title("Watershed Labels")
ax[5].imshow(labels_rgb, interpolation='nearest')
plt.show()
return labels, colors
def cytof_cell_segmentation(nuclei_seg, radius=5, membrane_channel=None, show_process=False,
start_coords=(0, 0), side=100, colors=[]):
""" Cell segmentation based on nuclei segmentation; membrane-guided cell segmentation if membrane_channel provided.
Inputs:
nuclei_seg = an index image containing nuclei instance segmentation information, where the background is
represented by 1, size=(h,w). Typically, the output of calling the cytof_nuclei_segmentation
function.
radius = assumed radius of cells (default=5)
membrane_channel = membrane image channel of original cytof image (default=None)
show_process = a flag indicating whether or not showing the segmentation process (default=False)
start_coords = the starting (x,y) coordinates of visualizing process (default=(0,0))
side = the side length of visualizing process (default=100)
colors = a list of colors used to visualize segmentation results (default=[])
Returns:
labels = an index image containing cell instance segmentation information, where the background is
represented by 1
colors = the list of colors used to visualize segmentation results
:param nuclei_seg: numpy.ndarray
:param radius: int
:param membrane_channel: numpy.ndarray
:param show_process: bool
:param start_coords: tuple
:param side: int
:return labels: numpy.ndarray
:return colors: list
"""
if len(colors) == 0:
cmap_set3 = plt.get_cmap("Set3")
cmap_tab20c = plt.get_cmap("tab20c")
colors = [cmap_tab20c.colors[_] for _ in range(len(cmap_tab20c.colors))] + \
[cmap_set3.colors[_] for _ in range(len(cmap_set3.colors))]
x0, y0 = start_coords
## nuclei segmentation -> nuclei mask
nuclei_mask = nuclei_seg > 1
if show_process:
nuclei_bg = nuclei_seg.min()
fig, ax = plt.subplots(1, 2, figsize=(8, 4))
nuclei_seg_vis = label2rgb(nuclei_seg[x0:x0 + side, y0:y0 + side], bg_label=nuclei_bg, colors=colors)
nuclei_seg_vis[nuclei_seg[x0:x0 + side, y0:y0 + side] == nuclei_bg, ...] = (0, 0, 0)
ax[0].imshow(nuclei_seg_vis), ax[0].set_title('nuclei segmentation')
ax[1].imshow(nuclei_mask[x0:x0 + side, y0:y0 + side], cmap='gray'), ax[1].set_title('nuclei mask')
if membrane_channel is not None:
membrane_mask = generate_mask(np.clip(membrane_channel, 0, np.quantile(membrane_channel, 0.95)),
fill_hole=False, use_watershed=False)
if show_process:
# visualize
nuclei_membrane = np.zeros((membrane_mask.shape[0], membrane_mask.shape[1], 3), dtype=np.uint8)
nuclei_membrane[..., 0] = nuclei_mask * 255
nuclei_membrane[..., 1] = membrane_mask
fig, ax = plt.subplots(1, 2, figsize=(8, 4))
ax[0].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray'), ax[0].set_title('membrane mask')
ax[1].imshow(nuclei_membrane[x0:x0 + side, y0:y0 + side]), ax[1].set_title('nuclei - membrane')
# postprocess raw membrane mask
membrane_mask_close = skimage.morphology.closing(membrane_mask, skimage.morphology.disk(1))
membrane_mask_open = skimage.morphology.opening(membrane_mask_close, skimage.morphology.disk(1))
membrane_mask_erode = skimage.morphology.erosion(membrane_mask_open, skimage.morphology.disk(3))
# Find skeleton
membrane_for_skeleton = (membrane_mask_open > 0) & (nuclei_mask == False)
membrane_skeleton = skimage.morphology.skeletonize(membrane_for_skeleton)
'''print(membrane_skeleton)
print(membrane_mask_erode)'''
membrane_mask = membrane_mask_erode
membrane_mask_2 = (membrane_mask_erode > 0) | membrane_skeleton
if show_process:
fig, axs = plt.subplots(1, 4, figsize=(16, 4))
axs[0].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[0].set_title('raw membrane mask')
axs[1].imshow(membrane_mask_close[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[1].set_title('membrane mask - closed')
axs[2].imshow(membrane_mask_open[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[2].set_title('membrane mask - opened')
axs[3].imshow(membrane_mask_erode[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[3].set_title('membrane mask - erosion')
plt.show()
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
axs[0].imshow(membrane_skeleton[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[0].set_title('skeleton')
axs[1].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[1].set_title('membrane mask (final)')
axs[2].imshow(membrane_mask_2[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[2].set_title('membrane mask 2')
plt.show()
# overlap and visualize
nuclei_membrane = np.zeros((membrane_mask.shape[0], membrane_mask.shape[1], 3), dtype=np.uint8)
nuclei_membrane[..., 0] = nuclei_mask * 255
nuclei_membrane[..., 1] = membrane_mask
fig, ax = plt.subplots(1, 2, figsize=(8, 4))
ax[0].imshow(membrane_mask[x0:x0 + side, y0:y0 + side], cmap='gray'), ax[0].set_title('membrane mask')
ax[1].imshow(nuclei_membrane[x0:x0 + side, y0:y0 + side]), ax[1].set_title('nuclei - membrane')
# dilate nuclei mask by radius
dilate_nuclei_mask = skimage.morphology.dilation(nuclei_mask, skimage.morphology.disk(radius))
if show_process:
fig, axs = plt.subplots(1, 3, figsize=(12, 4))
axs[0].imshow(nuclei_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[0].set_title('nuclei mask')
axs[1].imshow(dilate_nuclei_mask[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[1].set_title('dilated nuclei mask')
if membrane_channel is not None:
axs[2].imshow(membrane_mask[x0:x0 + side, y0:y0 + side] > 0, cmap='gray')
axs[2].set_title('membrane mask')
# define sure foreground, sure background, and unknown region
sure_fg = nuclei_mask.copy() # nuclei mask defines sure foreground
# dark region in dilated nuclei mask (dilate_nuclei_mask == False) OR bright region in cell mask (cell_mask > 0)
# defines sure background
if membrane_channel is not None:
sure_bg = ((membrane_mask > 0) | (dilate_nuclei_mask == False)) & (sure_fg == False)
sure_bg2 = ((membrane_mask_2 > 0) | (dilate_nuclei_mask == False)) & (sure_fg == False)
else:
sure_bg = (dilate_nuclei_mask == False) & (sure_fg == False)
unknown = np.logical_not(np.logical_or(sure_fg, sure_bg))
if show_process:
fig, axs = plt.subplots(1, 4, figsize=(16, 4))
axs[0].imshow(sure_fg[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[0].set_title('sure fg')
axs[1].imshow(sure_bg[x0:x0 + side, y0:y0 + side], cmap='gray')
if membrane_channel is not None:
axs[1].set_title('sure bg: membrane | not (dilated nuclei)')
else:
axs[1].set_title('sure bg: not (dilated nuclei)')
axs[2].imshow(unknown[x0:x0 + side, y0:y0 + side], cmap='gray')
axs[2].set_title('unknown')
# visualize in a RGB image
fg_bg_un = np.zeros((unknown.shape[0], unknown.shape[1], 3), dtype=np.uint8)
fg_bg_un[..., 0] = sure_fg * 255 # sure foreground - red
fg_bg_un[..., 1] = sure_bg * 255 # sure background - green
fg_bg_un[..., 2] = unknown * 255 # unknown - blue
axs[3].imshow(fg_bg_un[x0:x0 + side, y0:y0 + side])
plt.show()
## Euclidean distance transform: distance to the closest zero pixel for each pixel of the input image.
if membrane_channel is not None:
distance_bg = -scipy.ndimage.distance_transform_edt(1 - sure_bg2)
distance_fg = scipy.ndimage.distance_transform_edt(1 - sure_fg)
distance = distance_bg+distance_fg
else:
distance = scipy.ndimage.distance_transform_edt(1 - sure_fg)
distance = scipy.ndimage.gaussian_filter(distance, 1)
# watershed
markers = nuclei_seg.copy()
markers[unknown] = 0
if show_process:
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].set_title("markers")
axs[0].imshow(label2rgb(markers[x0:x0 + side, y0:y0 + side], bg_label=1, colors=colors),
interpolation='nearest')
axs[1].set_title("distance")
im = axs[1].imshow(distance[x0:x0 + side, y0:y0 + side], cmap=plt.cm.nipy_spectral, interpolation='nearest')
plt.colorbar(im, ax=axs[1])
labels = skimage.segmentation.watershed(distance, markers)
if show_process:
fig, axs = plt.subplots(1, 4, figsize=(16, 4))
axs[0].imshow(unknown[x0:x0 + side, y0:y0 + side])
axs[0].set_title('cytoplasm') # , cmap=cmap, interpolation='nearest'
nuclei_lb = label2rgb(nuclei_seg, bg_label=1, colors=colors)
nuclei_lb[nuclei_seg == 1, ...] = (0, 0, 0)
axs[1].imshow(nuclei_lb) # , cmap=cmap, interpolation='nearest')
axs[1].set_xlim(x0, x0 + side - 1), axs[1].set_ylim(y0 + side - 1, y0)
axs[1].set_title('nuclei')
cell_lb = label2rgb(labels, bg_label=1, colors=colors)
cell_lb[labels == 1, ...] = (0, 0, 0)
axs[2].imshow(cell_lb) # , cmap=cmap, interpolation='nearest')
axs[2].set_title('cells')
axs[2].set_xlim(x0, x0 + side - 1), axs[2].set_ylim(y0 + side - 1, y0)
merge_lb = cell_lb.copy()
merge_lb = cell_lb ** 2
merge_lb[nuclei_mask == 1, ...] = np.clip(nuclei_lb[nuclei_mask == 1, ...].astype(float) * 1.2, 0, 1)
axs[3].imshow(merge_lb)
axs[3].set_title('nuclei-cells')
axs[3].set_xlim(x0, x0 + side - 1), axs[3].set_ylim(y0 + side - 1, y0)
plt.show()
return labels, colors
def visualize_segmentation(raw_image, channels, seg, channel_ids, bound_color=(1, 1, 1), bound_mode='inner', show=True, bg_label=0):
""" Visualize segmentation results with boundaries
Inputs:
raw_image = raw cytof image
channels = a list of channels correspond to each channel in raw_image
seg = instance segmentation result (index image)
channel_ids = indices of desired channels to visualize results
bound_color = desired color in RGB to show boundaries (default=(1,1,1), white color)
bound_mode = the mode for finding boundaries, string in {‘thick’, ‘inner’, ‘outer’, ‘subpixel’}.
(default="inner"). For more details, see
[skimage.segmentation.mark_boundaries](https://scikit-image.org/docs/stable/api/skimage.segmentation.html)
show = a flag indicating whether or not print result image on screen
Returns:
marked_image
:param raw_image: numpy.ndarray
:param seg: numpy.ndarray
:param channel_ids: int
:param bound_color: tuple
:param bound_mode: string
:param show: bool
:return marked_image
"""
from cytof.hyperion_preprocess import cytof_merge_channels
# mark_boundaries() highight the segmented area for better visualization
# ref: https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.mark_boundaries
marked_image = mark_boundaries(cytof_merge_channels(raw_image, channels, channel_ids)[0],
seg, mode=bound_mode, color=bound_color, background_label=bg_label)
if show:
plt.figure(figsize=(8,8))
plt.imshow(marked_image)
plt.show()
return marked_image
|