File size: 67,518 Bytes
b78c3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 |
import os
import re
import glob
import pickle as pkl
import copy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm
import warnings
from tqdm import tqdm
import skimage
import phenograph
import umap
import seaborn as sns
from scipy.stats import spearmanr
import sys
import platform
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # cytof root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != 'Windows':
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from classes import CytofImage, CytofImageTiff
import hyperion_preprocess as pre
import hyperion_segmentation as seg
from utils import load_CytofImage
# from cytof import hyperion_preprocess as pre
# from cytof import hyperion_segmentation as seg
# from cytof.utils import load_CytofImage
def _longest_substring(str1, str2):
ans = ""
len1, len2 = len(str1), len(str2)
for i in range(len1):
for j in range(len2):
match = ""
_len = 0
while ((i+_len < len1) and (j+_len < len2) and str1[i+_len] == str2[j+_len]):
match += str1[i+_len]
_len += 1
if len(match) > len(ans):
ans = match
return ans
def extract_feature(channels, raw_image, nuclei_seg, cell_seg, filename, show_head=False):
""" Extract nuclei and cell level feature from cytof image based on nuclei segmentation and cell segmentation
results
Inputs:
channels = channels to extract feature from
raw_image = raw cytof image
nuclei_seg = nuclei segmentation result
cell_seg = cell segmentation result
filename = filename of current cytof image
Returns:
feature_summary_df = a dataframe containing summary of extracted features
morphology = names of morphology features extracted
:param channels: list
:param raw_image: numpy.ndarray
:param nuclei_seg: numpy.ndarray
:param cell_seg: numpy.ndarray
:param filename: string
:param morpholoty: list
:return feature_summary_df: pandas.core.frame.DataFrame
"""
assert (len(channels) == raw_image.shape[-1])
# morphology features to be extracted
morphology = ["area", "convex_area", "eccentricity", "extent",
"filled_area", "major_axis_length", "minor_axis_length",
"orientation", "perimeter", "solidity", "pa_ratio"]
## morphology features
nuclei_morphology = [_ + '_nuclei' for _ in morphology] # morphology - nuclei level
cell_morphology = [_ + '_cell' for _ in morphology] # morphology - cell level
## single cell features
# nuclei level
sum_exp_nuclei = [_ + '_nuclei_sum' for _ in channels] # sum expression over nuclei
ave_exp_nuclei = [_ + '_nuclei_ave' for _ in channels] # average expression over nuclei
# cell level
sum_exp_cell = [_ + '_cell_sum' for _ in channels] # sum expression over cell
ave_exp_cell = [_ + '_cell_ave' for _ in channels] # average expression over cell
# column names of final result dataframe
column_names = ["filename", "id", "coordinate_x", "coordinate_y"] + \
sum_exp_nuclei + ave_exp_nuclei + nuclei_morphology + \
sum_exp_cell + ave_exp_cell + cell_morphology
# Initiate
res = dict()
for column_name in column_names:
res[column_name] = []
n_nuclei = np.max(nuclei_seg)
for nuclei_id in tqdm(range(2, n_nuclei + 1), position=0, leave=True):
res["filename"].append(filename)
res["id"].append(nuclei_id)
regions = skimage.measure.regionprops((nuclei_seg == nuclei_id) * 1) # , coordinates='xy') (deprecated)
if len(regions) >= 1:
this_nucleus = regions[0]
else:
continue
regions = skimage.measure.regionprops((cell_seg == nuclei_id) * 1) # , coordinates='xy') (deprecated)
if len(regions) >= 1:
this_cell = regions[0]
else:
continue
centroid_y, centroid_x = this_nucleus.centroid # y: rows; x: columns
res['coordinate_x'].append(centroid_x)
res['coordinate_y'].append(centroid_y)
# morphology
for i, feature in enumerate(morphology[:-1]):
res[nuclei_morphology[i]].append(getattr(this_nucleus, feature))
res[cell_morphology[i]].append(getattr(this_cell, feature))
res[nuclei_morphology[-1]].append(1.0 * this_nucleus.perimeter ** 2 / this_nucleus.filled_area)
res[cell_morphology[-1]].append(1.0 * this_cell.perimeter ** 2 / this_cell.filled_area)
# markers
for i, marker in enumerate(channels):
ch = i
res[sum_exp_nuclei[i]].append(np.sum(raw_image[nuclei_seg == nuclei_id, ch]))
res[ave_exp_nuclei[i]].append(np.average(raw_image[nuclei_seg == nuclei_id, ch]))
res[sum_exp_cell[i]].append(np.sum(raw_image[cell_seg == nuclei_id, ch]))
res[ave_exp_cell[i]].append(np.average(raw_image[cell_seg == nuclei_id, ch]))
feature_summary_df = pd.DataFrame(res)
if show_head:
print(feature_summary_df.head())
return feature_summary_df
###############################################################################
# def check_feature_distribution(feature_summary_df, features):
# """ Visualize feature distribution for each feature
# Inputs:
# feature_summary_df = dataframe of extracted feature summary
# features = features to check distribution
# Returns:
# None
# :param feature_summary_df: pandas.core.frame.DataFrame
# :param features: list
# """
# for feature in features:
# print(feature)
# fig, ax = plt.subplots(1, 1, figsize=(3, 2))
# ax.hist(np.log2(feature_summary_df[feature] + 0.0001), 100)
# ax.set_xlim(-15, 15)
# plt.show()
def feature_quantile_normalization(feature_summary_df, features, qs=[75,99]):
""" Calculate the q-quantiles of selected features given quantile q values. Then perform q-quantile normalization
on these features using calculated quantile values. The feature_summary_df will be updated in-place with new
columns "feature_qnormed" generated and added. Meanwhile, visualize distribution of log2 features before and after
q-normalization
Inputs:
feature_summary_df = dataframe of extracted feature summary
features = features to be normalized
qs = quantile q values (default=[75,99])
Returns:
quantiles = quantile values for each q
:param feature_summary_df: pandas.core.frame.DataFrame
:param features: list
:param qs: list
:return quantiles: dict
"""
expressions = []
expressions_normed = dict((key, []) for key in qs)
quantiles = {}
colors = cm.rainbow(np.linspace(0, 1, len(qs)))
for feat in features:
quantiles[feat] = {}
expressions.extend(feature_summary_df[feat])
plt.hist(np.log2(np.array(expressions) + 0.0001), 100, density=True)
for q, c in zip(qs, colors):
quantile_val = np.quantile(expressions, q/100)
quantiles[feat][q] = quantile_val
plt.axvline(np.log2(quantile_val), label=f"{q}th percentile", c=c)
print(f"{q}th percentile: {quantile_val}")
# log-quantile normalization
normed = np.log2(feature_summary_df.loc[:, feat] / quantile_val + 0.0001)
feature_summary_df.loc[:, f"{feat}_{q}normed"] = normed
expressions_normed[q].extend(normed)
plt.xlim(-15, 15)
plt.xlabel("log2(expression of all markers)")
plt.legend()
plt.show()
# visualize before & after quantile normalization
'''N = len(qs)+1 # (len(qs)+1) // 2 + (len(qs)+1) %2'''
log_expressions = tuple([np.log2(np.array(expressions) + 0.0001)] + [expressions_normed[q] for q in qs])
labels = ["before normalization"] + [f"after {q} normalization" for q in qs]
fig, ax = plt.subplots(1, 1, figsize=(12, 7))
ax.hist(log_expressions, 100, density=True, label=labels)
ax.set_xlabel("log2(expressions for all markers)")
plt.legend()
plt.show()
return quantiles
def feature_scaling(feature_summary_df, features, inplace=False):
"""Perform in-place mean-std scaling on selected features. Normally, do not scale nuclei sum feature
Inputs:
feature_summary_df = dataframe of extracted feature summary
features = features to perform scaling on
inplace = an indicator of whether perform the scaling in-place (Default=False)
Returns:
:param feature_summary_df: pandas.core.frame.DataFrame
:param features: list
:param inplace: bool
"""
scaled_feature_summary_df = feature_summary_df if inplace else feature_summary_df.copy()
for feat in features:
if feat not in feature_summary_df.columns:
print(f"Warning: {feat} not available!")
continue
scaled_feature_summary_df[feat] = \
(scaled_feature_summary_df[feat] - np.average(scaled_feature_summary_df[feat])) \
/ np.std(scaled_feature_summary_df[feat])
if not inplace:
return scaled_feature_summary_df
def generate_summary(feature_summary_df, features, thresholds):
"""Generate (cell level) summary table for each feature in features: feature name, total number (of cells),
calculated GMM threshold for this feature, number of individuals (cells) with greater than threshold values,
ratio of individuals (cells) with greater than threshold values
Inputs:
feature_summary_df = dataframe of extracted feature summary
features = a list of features to generate summary table
thresholds = (calculated GMM-based) thresholds for each feature
Outputs:
df_info = summary table for each feature
:param feature_summary_df: pandas.core.frame.DataFrame
:param features: list
:param thresholds: dict
:return df_info: pandas.core.frame.DataFrame
"""
df_info = pd.DataFrame(columns=['feature', 'total number', 'threshold', 'positive counts', 'positive ratio'])
for feature in features:
# calculate threshold
thres = thresholds[feature]
X = feature_summary_df[feature].values
n = sum(X > thres)
N = len(X)
df_new_row = pd.DataFrame({'feature': feature,'total number':N, 'threshold':thres,
'positive counts':n, 'positive ratio': n/N}, index=[0])
df_info = pd.concat([df_info, df_new_row])
return df_info
# def visualize_thresholding_outcome(feat,
# feature_summary_df,
# raw_image,
# channel_names,
# thres,
# nuclei_seg,
# cell_seg,
# vis_quantile_q=0.9, savepath=None):
# """ Visualize calculated threshold for a feature by mapping back to nuclei and cell segmentation outputs - showing
# greater than threshold pixels in red color, others with blue color.
# Meanwhile, visualize the original image with red color indicating the channel correspond to the feature.
# Inputs:
# feat = name of the feature to visualize
# feature_summary_df = dataframe of extracted feature summary
# raw_image = raw cytof image
# channel_names = a list of marker names, which is consistent with each channel in the raw_image
# thres = threshold value for feature "feat"
# nuclei_seg = nuclei segmentation output
# cell_seg = cell segmentation output
# Outputs:
# stain_nuclei = nuclei segmentation output stained with threshold information
# stain_cell = cell segmentation output stained with threshold information
# :param feat: string
# :param feature_summary_df: pandas.core.frame.DataFrame
# :param raw_image: numpy.ndarray
# :param channel_names: list
# :param thres: float
# :param nuclei_seg: numpy.ndarray
# :param cell_seg: numpy.ndarray
# :return stain_nuclei: numpy.ndarray
# :return stain_cell: numpy.ndarray
# """
# col_name = channel_names[np.argmax([len(_longest_substring(feat, x)) for x in channel_names])]
# col_id = channel_names.index(col_name)
# df_temp = pd.DataFrame(columns=[f"{feat}_overthres"], data=np.zeros(len(feature_summary_df), dtype=np.int32))
# df_temp.loc[feature_summary_df[feat] > thres, f"{feat}_overthres"] = 1
# feature_summary_df = pd.concat([feature_summary_df, df_temp], axis=1)
# # feature_summary_df.loc[:, f"{feat}_overthres"] = 0
# # feature_summary_df.loc[feature_summary_df[feat] > thres, f"{feat}_overthres"] = 1
#
# '''rgba_color = [plt.cm.get_cmap('tab20').colors[_ % 20] for _ in feature_summary_df.loc[:, f"{feat}_overthres"]]'''
# color_ids = []
#
# # stained Nuclei image
# stain_nuclei = np.zeros((nuclei_seg.shape[0], nuclei_seg.shape[1], 3)) + 1
# for i in range(2, np.max(nuclei_seg) + 1):
# color_id = feature_summary_df[f"{feat}_overthres"][feature_summary_df['id'] == i].values[0] * 2
# if color_id not in color_ids:
# color_ids.append(color_id)
# stain_nuclei[nuclei_seg == i] = plt.cm.get_cmap('tab20').colors[color_id][:3]
#
# # stained Cell image
# stain_cell = np.zeros((cell_seg.shape[0], cell_seg.shape[1], 3)) + 1
# for i in range(2, np.max(cell_seg) + 1):
# color_id = feature_summary_df[f"{feat}_overthres"][feature_summary_df['id'] == i].values[0] * 2
# stain_cell[cell_seg == i] = plt.cm.get_cmap('tab20').colors[color_id][:3]
#
# fig, axs = plt.subplots(1,3,figsize=(16, 8))
# if col_id != 0:
# channel_ids = (col_id, 0)
# else:
# channel_ids = (col_id, -1)
# '''print(channel_ids)'''
# quantiles = [np.quantile(raw_image[..., _], vis_quantile_q) for _ in channel_ids]
# vis_img, _ = pre.cytof_merge_channels(raw_image, channel_names=channel_names,
# channel_ids=channel_ids, quantiles=quantiles)
# marker = feat.split("(")[0]
# print(f"Nuclei and cell with high {marker} expression shown in orange, low in blue.")
#
# axs[0].imshow(vis_img)
# axs[1].imshow(stain_nuclei)
# axs[2].imshow(stain_cell)
# axs[0].set_title("pseudo-colored original image")
# axs[1].set_title(f"{marker} expression shown in nuclei")
# axs[2].set_title(f"{marker} expression shown in cell")
# if savepath is not None:
# plt.savefig(savepath)
# plt.show()
# return stain_nuclei, stain_cell, vis_img
########################################################################################################################
############################################### batch functions ########################################################
########################################################################################################################
def batch_extract_feature(files, markers, nuclei_markers, membrane_markers=None, show_vis=False):
"""Extract features for cytof images from a list of files. Normally this list contains ROIs of the same slide
Inputs:
files = a list of files to be processed
markers = a list of marker names used when generating the image
nuclei_markers = a list of markers define the nuclei channel (used for nuclei segmentation)
membrane_markers = a list of markers define the membrane channel (used for cell segmentation) (Default=None)
show_vis = an indicator of showing visualization during process
Outputs:
file_features = a dictionary contains extracted features for each file
:param files: list
:param markers: list
:param nuclei_markers: list
:param membrane_markers: list
:param show_vis: bool
:return file_features: dict
"""
file_features = {}
for f in tqdm(files):
# read data
df = pre.cytof_read_data(f)
# preprocess
df_ = pre.cytof_preprocess(df)
column_names = markers[:]
df_output = pre.define_special_channel(df_, 'nuclei', markers=nuclei_markers)
column_names.insert(0, 'nuclei')
if membrane_markers is not None:
df_output = pre.define_special_channel(df_output, 'membrane', markers=membrane_markers)
column_names.append('membrane')
raw_image = pre.cytof_txt2img(df_output, marker_names=column_names)
if show_vis:
merged_im, _ = pre.cytof_merge_channels(raw_image, channel_ids=[0, -1], quantiles=None, visualize=False)
plt.imshow(merged_im[0:200, 200:400, ...])
plt.title('Selected region of raw cytof image')
plt.show()
# nuclei and cell segmentation
nuclei_img = raw_image[..., column_names.index('nuclei')]
nuclei_seg, color_dict = seg.cytof_nuclei_segmentation(nuclei_img, show_process=False)
if membrane_markers is not None:
membrane_img = raw_image[..., column_names.index('membrane')]
cell_seg, _ = seg.cytof_cell_segmentation(nuclei_seg, membrane_channel=membrane_img, show_process=False)
else:
cell_seg, _ = seg.cytof_cell_segmentation(nuclei_seg, show_process=False)
if show_vis:
marked_image_nuclei = seg.visualize_segmentation(raw_image, nuclei_seg, channel_ids=(0, -1), show=False)
marked_image_cell = seg.visualize_segmentation(raw_image, cell_seg, channel_ids=(-1, 0), show=False)
fig, axs = plt.subplots(1,2,figsize=(10,6))
axs[0].imshow(marked_image_nuclei[0:200, 200:400, :]), axs[0].set_title('nuclei segmentation')
axs[1].imshow(marked_image_cell[0:200, 200:400, :]), axs[1].set_title('cell segmentation')
plt.show()
# feature extraction
feat_names = markers[:]
feat_names.insert(0, 'nuclei')
df_feat_sum = extract_feature(feat_names, raw_image, nuclei_seg, cell_seg, filename=f)
file_features[f] = df_feat_sum
return file_features
def batch_norm_scale(file_features, column_names, qs=[75,99]):
"""Perform feature log transform, quantile normalization and scaling in a batch
Inputs:
file_features = A dictionary of dataframes containing extracted features. key - file name, item - feature table
column_names = A list of markers. Should be consistent with column names in dataframe of features
qs = quantile q values (Default=[75,99])
Outputs:
file_features_out = log transformed, quantile normalized and scaled features for each file in the batch
quantiles = a dictionary of quantile values for each file in the batch
:param file_features: dict
:param column_names: list
:param qs: list
:return file_features_out: dict
:return quantiles: dict
"""
file_features_out = copy.deepcopy(file_features) # maintain a copy of original file_features
# marker features
cell_markers_sum = [_ + '_cell_sum' for _ in column_names]
cell_markers_ave = [_ + '_cell_ave' for _ in column_names]
nuclei_markers_sum = [_ + '_nuclei_sum' for _ in column_names]
nuclei_markers_ave = [_ + '_nuclei_ave' for _ in column_names]
# morphology features
morphology = ["area", "convex_area", "eccentricity", "extent",
"filled_area", "major_axis_length", "minor_axis_length",
"orientation", "perimeter", "solidity", "pa_ratio"]
nuclei_morphology = [_ + '_nuclei' for _ in morphology] # morphology - nuclei level
cell_morphology = [_ + '_cell' for _ in morphology] # morphology - cell level
# features to be normalized
features_to_norm = [x for x in nuclei_markers_sum + nuclei_markers_ave + cell_markers_sum + cell_markers_ave \
if not x.startswith('nuclei')]
# features to be scaled
scale_features = []
for feature_name in nuclei_morphology + cell_morphology + nuclei_markers_sum + nuclei_markers_ave + \
cell_markers_sum + cell_markers_ave:
'''if feature_name not in nuclei_morphology + cell_morphology and not feature_name.startswith('nuclei'):
scale_features += [feature_name, f"{feature_name}_75normed", f"{feature_name}_99normed"]
else:
scale_features += [feature_name]'''
temp = [feature_name]
if feature_name not in nuclei_morphology + cell_morphology and not feature_name.startswith('nuclei'):
for q in qs:
temp += [f"{feature_name}_{q}normed"]
scale_features += temp
quantiles = {}
for f, df in file_features_out.items():
print(f)
quantiles[f] = feature_quantile_normalization(df, features=features_to_norm, qs=qs)
feature_scaling(df, features=scale_features, inplace=True)
return file_features_out, quantiles
def batch_scale_feature(outdir, normqs, df_io=None, files_scale=None):
"""
Inputs:
outdir = output saving directory, which contains the scale file generated previously,
the input_output_csv file with the list of available cytof_img class instances in the batch,
as well as previously saved cytof_img class instances in .pkl files
normqs = a list of q values of percentile normalization
files_scale = full file name of the scaling information
Outputs: None
Scaled feature are saved as .csv files in subfolder "feature_qnormed_scaled" in outdir
A new attribute will be added to cytof_img class instance, and the update class instance is saved in outdir
"""
if df_io is None:
df_io = pd.read_csv(os.path.join(outdir, "input_output.csv"))
for _i, normq in enumerate(normqs):
n_attr = f"df_feature_{normq}normed"
n_attr_scaled = f"{n_attr}_scaled"
file_scale = files_scale[_i] if files_scale is not None else os.path.join(outdir, "{}normed_scale_params.csv".format(normq))
# saving directory of scaled normed feature
dirq = os.path.join(outdir, f"feature_{normq}normed_scaled")
if not os.path.exists(dirq):
os.makedirs(dirq)
# load scaling parameters
df_scale = pd.read_csv(file_scale, index_col=False)
m = df_scale[df_scale.columns].iloc[0] # mean
s = df_scale[df_scale.columns].iloc[1] # std.dev
dfs = {}
cytofs = {}
# save scaled feature
for f_cytof in df_io['output_file']:
# for roi, f_cytof in zip(df_io['ROI'], df_io['output_file']):
cytof_img = pkl.load(open(f_cytof, "rb"))
assert hasattr(cytof_img, n_attr), f"attribute {n_attr} not exist"
df_feat = copy.deepcopy(getattr(cytof_img, n_attr))
assert len([x for x in df_scale.columns if x not in df_feat.columns]) == 0
# scale
df_feat[df_scale.columns] = (df_feat[df_scale.columns] - m) / s
# save scaled feature to csv
df_feat.to_csv(os.path.join(dirq, os.path.basename(f_cytof).replace('.pkl', '.csv')), index=False)
# add attribute "df_feature_scaled"
setattr(cytof_img, n_attr_scaled, df_feat)
# save updated cytof_img class instance
pkl.dump(cytof_img, open(f_cytof, "wb"))
def batch_generate_summary(outdir, feature_type="normed", normq=75, scaled=True, vis_thres=False):
"""
Inputs:
outdir = output saving directory, which contains the scale file generated previously, as well as previously saved
cytof_img class instances in .pkl files
feature_type = type of feature to be used, available choices: "original", "normed", "scaled"
normq = q value of quantile normalization
scaled = a flag indicating whether or not use the scaled version of features (Default=False)
vis_thres = a flag indicating whether or not visualize the process of calculating thresholds (Default=False)
Outputs: None
Two .csv files, one for cell sum and the other for cell average features, are saved for each ROI, containing the
threshold and cell count information of each feature, in the subfolder "marker_summary" under outdir
"""
assert feature_type in ["original", "normed", "scaled"], 'accepted feature types are "original", "normed", "scaled"'
if feature_type == "original":
feat_name = ""
elif feature_type == "normed":
feat_name = f"{normq}normed"
else:
feat_name = f"{normq}normed_scaled"
n_attr = f"df_feature_{feat_name}"
dir_sum = os.path.join(outdir, "marker_summary", feat_name)
print(dir_sum)
if not os.path.exists(dir_sum):
os.makedirs(dir_sum)
seen = 0
dfs = {}
cytofs = {}
df_io = pd.read_csv(os.path.join(outdir, "input_output.csv"))
for f in df_io['output_file'].tolist():
f_roi = os.path.basename(f).split(".pkl")[0]
cytof_img = pkl.load(open(f, "rb"))
##### updated #####
df_feat = getattr(cytof_img, n_attr)
dfs[f] = getattr(cytof_img, n_attr)
cytofs[f] = cytof_img
##### end updated #####
if seen == 0:
feat_cell_sum = cytof_img.features['cell_sum']
feat_cell_ave = cytof_img.features['cell_ave']
seen += 1
##### updated #####
all_df = pd.concat(dfs.values(), ignore_index=True)
print("Getting thresholds for marker sum")
thres_sum = _get_thresholds(all_df, feat_cell_sum, visualize=vis_thres)
print("Getting thresholds for marker average")
thres_ave = _get_thresholds(all_df, feat_cell_ave, visualize=vis_thres)
for f, cytof_img in cytofs.items():
f_roi = os.path.basename(f).split(".pkl")[0]
df_info_cell_sum_f = generate_summary(dfs[f], features=feat_cell_sum, thresholds=thres_sum)
df_info_cell_ave_f = generate_summary(dfs[f], features=feat_cell_ave, thresholds=thres_ave)
setattr(cytof_img, f"cell_count_{feat_name}_sum", df_info_cell_sum_f)
setattr(cytof_img, f"cell_count_{feat_name}_ave", df_info_cell_ave_f)
df_info_cell_sum_f.to_csv(os.path.join(dir_sum, f"{f_roi}_cell_count_sum.csv"), index=False)
df_info_cell_ave_f.to_csv(os.path.join(dir_sum, f"{f_roi}_cell_count_ave.csv"), index=False)
pkl.dump(cytof_img, open(f, "wb"))
return dir_sum
def _gather_roi_expressions(df_io, normqs=[75]):
"""Only cell level sum"""
expressions = {}
expressions_normed = {}
for roi in df_io["ROI"].unique():
expressions[roi] = []
f_cytof_im = df_io.loc[df_io["ROI"] == roi, "output_file"].values[0]
cytof_im = load_CytofImage(f_cytof_im)
for feature_name in cytof_im.features['cell_sum']:
expressions[roi].extend(cytof_im.df_feature[feature_name])
expressions_normed[roi] = dict((q, {}) for q in normqs)
for q in expressions_normed[roi].keys():
expressions_normed[roi][q] = []
normed_feat = getattr(cytof_im, "df_feature_{}normed".format(q))
for feature_name in cytof_im.features['cell_sum']:
expressions_normed[roi][q].extend(normed_feat[feature_name])
return expressions, expressions_normed
def visualize_normalization(df_slide_roi, normqs=[75], level="slide"):
expressions_, expressions_normed_ = _gather_roi_expressions(df_slide_roi, normqs=normqs)
if level == "slide":
prefix = "Slide"
expressions, expressions_normed = {}, {}
for slide in df_slide_roi["Slide"].unique():
f_rois = df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"].values
rois = [x.replace('.txt', '') for x in f_rois]
expressions[slide] = []
expressions_normed[slide] = dict((q, []) for q in normqs)
for roi in rois:
expressions[slide].extend(expressions_[roi])
for q in expressions_normed[slide].keys():
expressions_normed[slide][q].extend(expressions_normed_[roi][q])
else:
expressions, expressions_normed = expressions_, expressions_normed_
prefix = "ROI"
num_q = len(normqs)
for key, key_exp in expressions.items(): # create a new plot for each slide (or ROI)
print("Showing {} {}".format(prefix, key))
fig, ax = plt.subplots(1, num_q + 1, figsize=(4 * (num_q + 1), 4))
ax[0].hist((np.log2(np.array(key_exp) + 0.0001),), 100, density=True)
ax[0].set_title("Before normalization")
ax[0].set_xlabel("log2(cellular expression of all markers)")
for i, q in enumerate(normqs):
ax[i + 1].hist((np.array(expressions_normed[key][q]) + 0.0001,), 100, density=True)
ax[i + 1].set_title("After {}-th percentile normalization".format(q))
ax[i + 1].set_xlabel("log2(cellular expression of all markers)")
plt.show()
return expressions, expressions_normed
###########################################################
############# marker level analysis functions #############
###########################################################
############# marker co-expression analysis #############
def _gather_roi_co_exp(df_slide_roi, outdir, feat_name, accumul_type):
"""roi level co-expression analysis"""
n_attr = f"df_feature_{feat_name}"
expected_percentages = {}
edge_percentages = {}
num_cells = {}
for seen_roi, f_roi in enumerate(df_slide_roi["ROI"].unique()):
roi = f_roi.replace(".txt", "")
slide = df_slide_roi.loc[df_slide_roi["ROI"] == f_roi, "Slide"].values[0]
f_cytof_im = "{}_{}.pkl".format(slide, roi)
if not f_cytof_im in os.listdir(os.path.join(outdir, "cytof_images")):
print("{} not found, skip".format(f_cytof_im))
continue
cytof_im = load_CytofImage(os.path.join(outdir, "cytof_images", f_cytof_im))
df_feat = getattr(cytof_im, n_attr)
if seen_roi == 0:
# all gene (marker) columns
marker_col_all = [x for x in df_feat.columns if "cell_{}".format(accumul_type) in x]
marker_all = [x.split('(')[0] for x in marker_col_all]
n_marker = len(marker_col_all)
n_cell = len(df_feat)
# corresponding marker positive info file
df_info_cell = getattr(cytof_im,"cell_count_{}_{}".format(feat_name,accumul_type))
pos_nums = df_info_cell["positive counts"].values
pos_ratios = df_info_cell["positive ratio"].values
thresholds = df_info_cell["threshold"].values
# create new expected_percentage matrix for each ROI
expected_percentage = np.zeros((n_marker, n_marker))
# expected_percentage
# an N by N matrix, where N represent for the number of total gene (marker)
# each ij-th element represents for the percentage that both the i-th and the j-th gene is "positive"
# based on the threshold defined previously
for ii in range(n_marker):
for jj in range(n_marker):
expected_percentage[ii, jj] = pos_nums[ii] * pos_nums[jj]
expected_percentages[roi] = expected_percentage
# edge_percentage
# an N by N matrix, where N represent for the number of gene (marker)
# each ij-th element represents for the percentage of cells that show positive in both i-th and j-th gene
edge_nums = np.zeros_like(expected_percentage)
for ii in range(n_marker):
_x = df_feat[marker_col_all[ii]].values > thresholds[ii] # _x = df_feat[marker_col_all[ii]].values > thresholds[marker_idx[ii]]
for jj in range(n_marker):
_y = df_feat[marker_col_all[jj]].values > thresholds[jj] # _y = df_feat[marker_col_all[jj]].values > thresholds[marker_idx[jj]]
edge_nums[ii, jj] = np.sum(np.all([_x, _y], axis=0)) # / n_cell
edge_percentages[roi] = edge_nums
num_cells[roi] = n_cell
return expected_percentages, edge_percentages, num_cells, marker_all, marker_col_all
def co_expression_analysis(df_slide_roi, outdir, feature_type, accumul_type, co_exp_markers="all", normq=75,
level="slide", clustergrid=None):
"""
"""
assert level in ["slide", "roi"], "Only slide or roi levels are accepted!"
assert feature_type in ["original", "normed", "scaled"]
if feature_type == "original":
feat_name = ""
elif feature_type == "normed":
feat_name = f"{normq}normed"
else:
feat_name = f"{normq}normed_scaled"
print(feat_name)
dir_cytof_img = os.path.join(outdir, "cytof_images")
expected_percentages, edge_percentages, num_cells, marker_all, marker_col_all = \
_gather_roi_co_exp(df_slide_roi, outdir, feat_name, accumul_type)
if co_exp_markers != "all":
# assert (isinstance(co_exp_markers, list) and all([x in cytof_img.markers for x in co_exp_markers]))
assert (isinstance(co_exp_markers, list) and all([x in marker_all for x in co_exp_markers]))
marker_idx = np.array([marker_all.index(x) for x in co_exp_markers])
marker_all = [marker_all[x] for x in marker_idx]
marker_col_all = [marker_col_all[x] for x in marker_idx]
else:
marker_idx = np.arange(len(marker_all))
if level == "slide":
# expected_percentages, edge_percentages = {}, {}
for slide in df_slide_roi["Slide"].unique(): ## for each slide
for seen_roi, f_roi in enumerate(df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"]): ## for each ROI
roi = f_roi.replace(".txt", "")
if roi not in expected_percentages:
continue
if seen_roi == 0:
expected_percentages[slide] = expected_percentages[roi]
edge_percentages[slide] = edge_percentages[roi]
num_cells[slide] = num_cells[roi]
else:
expected_percentages[slide] += expected_percentages[roi]
edge_percentages[slide] += edge_percentages[roi]
num_cells[slide] += num_cells[roi]
expected_percentages.pop(roi)
edge_percentages.pop(roi)
num_cells.pop(roi)
co_exps = {}
for key, expected_percentage in expected_percentages.items():
expected_percentage = expected_percentage / num_cells[key] ** 2
edge_percentage = edge_percentages[key] / num_cells[key]
# Normalize
edge_percentage_norm = np.log10(edge_percentage / expected_percentage + 0.1)
# Fix Nan
edge_percentage_norm[np.isnan(edge_percentage_norm)] = np.log10(1 + 0.1)
co_exps[key] = edge_percentage_norm
# plot
for f_key, edge_percentage_norm in co_exps.items():
plt.figure(figsize=(6, 6))
ax = sns.heatmap(edge_percentage_norm[marker_idx, :][:, marker_idx], center=np.log10(1 + 0.1),
# ax = sns.heatmap(edge_percentage_norm, center=np.log10(1 + 0.1),
cmap='RdBu_r', vmin=-1, vmax=3,
xticklabels=marker_all, yticklabels=marker_all)
ax.set_aspect('equal')
plt.title(f_key)
plt.show()
if clustergrid is None:
plt.figure()
clustergrid = sns.clustermap(edge_percentage_norm[marker_idx, :][:, marker_idx],
# clustergrid = sns.clustermap(edge_percentage_norm,
center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=3,
xticklabels=marker_all, yticklabels=marker_all, figsize=(6, 6))
plt.title(f_key)
plt.show()
# else:
plt.figure()
sns.clustermap(edge_percentage_norm[marker_idx, :][:, marker_idx] \
# sns.clustermap(edge_percentage_norm \
[clustergrid.dendrogram_row.reordered_ind, :][:, clustergrid.dendrogram_row.reordered_ind],
center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=3,
xticklabels=np.array(marker_all)[clustergrid.dendrogram_row.reordered_ind],
yticklabels=np.array(marker_all)[clustergrid.dendrogram_row.reordered_ind],
figsize=(6, 6), row_cluster=False, col_cluster=False)
plt.title(f_key)
plt.show()
return co_exps, marker_idx, clustergrid
############# marker correlation #############
from scipy.stats import spearmanr
def _gather_roi_corr(df_slide_roi, outdir, feat_name, accumul_type):
"""roi level correlation analysis"""
n_attr = f"df_feature_{feat_name}"
feats = {}
for seen_roi, f_roi in enumerate(df_slide_roi["ROI"].unique()):## for each ROI
roi = f_roi.replace(".txt", "")
slide = df_slide_roi.loc[df_slide_roi["ROI"] == f_roi, "Slide"].values[0]
f_cytof_im = "{}_{}.pkl".format(slide, roi)
if not f_cytof_im in os.listdir(os.path.join(outdir, "cytof_images")):
print("{} not found, skip".format(f_cytof_im))
continue
cytof_im = load_CytofImage(os.path.join(outdir, "cytof_images", f_cytof_im))
df_feat = getattr(cytof_im, n_attr)
feats[roi] = df_feat
if seen_roi == 0:
# all gene (marker) columns
marker_col_all = [x for x in df_feat.columns if "cell_{}".format(accumul_type) in x]
marker_all = [x.split('(')[0] for x in marker_col_all]
return feats, marker_all, marker_col_all
def correlation_analysis(df_slide_roi, outdir, feature_type, accumul_type, corr_markers="all", normq=75, level="slide",
clustergrid=None):
"""
"""
assert level in ["slide", "roi"], "Only slide or roi levels are accepted!"
assert feature_type in ["original", "normed", "scaled"]
if feature_type == "original":
feat_name = ""
elif feature_type == "normed":
feat_name = f"{normq}normed"
else:
feat_name = f"{normq}normed_scaled"
print(feat_name)
dir_cytof_img = os.path.join(outdir, "cytof_images")
feats, marker_all, marker_col_all = _gather_roi_corr(df_slide_roi, outdir, feat_name, accumul_type)
n_marker = len(marker_all)
corrs = {}
# n_marker = len(marker_all)
if level == "slide":
for slide in df_slide_roi["Slide"].unique(): ## for each slide
for seen_roi, f_roi in enumerate(df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"]): ## for each ROI
roi = f_roi.replace(".txt", "")
if roi not in feats:
continue
if seen_roi == 0:
feats[slide] = feats[roi]
else:
# feats[slide] = feats[slide].append(feats[roi], ignore_index=True)
feats[slide] = pd.concat([feats[slide], feats[roi]])
feats.pop(roi)
for key, feat in feats.items():
correlation = np.zeros((n_marker, n_marker))
for i, feature_i in enumerate(marker_col_all):
for j, feature_j in enumerate(marker_col_all):
correlation[i, j] = spearmanr(feat[feature_i].values, feat[feature_j].values).correlation
corrs[key] = correlation
if corr_markers != "all":
assert (isinstance(corr_markers, list) and all([x in marker_all for x in corr_markers]))
marker_idx = np.array([marker_all.index(x) for x in corr_markers])
marker_all = [marker_all[x] for x in marker_idx]
marker_col_all = [marker_col_all[x] for x in marker_idx]
else:
marker_idx = np.arange(len(marker_all))
# plot
for f_key, corr in corrs.items():
plt.figure(figsize=(6, 6))
ax = sns.heatmap(corr[marker_idx, :][:, marker_idx], center=np.log10(1 + 0.1),
cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=corr_markers, yticklabels=corr_markers)
ax.set_aspect('equal')
plt.title(f_key)
plt.show()
if clustergrid is None:
plt.figure()
clustergrid = sns.clustermap(corr[marker_idx, :][:, marker_idx],
center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=corr_markers, yticklabels=corr_markers, figsize=(6, 6))
plt.title(f_key)
plt.show()
plt.figure()
sns.clustermap(corr[marker_idx, :][:, marker_idx] \
[clustergrid.dendrogram_row.reordered_ind, :][:, clustergrid.dendrogram_row.reordered_ind],
center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=np.array(corr_markers)[clustergrid.dendrogram_row.reordered_ind],
yticklabels=np.array(corr_markers)[clustergrid.dendrogram_row.reordered_ind],
figsize=(6, 6), row_cluster=False, col_cluster=False)
plt.title(f_key)
plt.show()
return corrs, marker_idx, clustergrid
############# marker interaction #############
from sklearn.neighbors import DistanceMetric
from tqdm import tqdm
def _gather_roi_interact(df_slide_roi, outdir, feat_name, accumul_type, interact_markers="all", thres_dist=50):
dist = DistanceMetric.get_metric('euclidean')
n_attr = f"df_feature_{feat_name}"
edge_percentages = {}
num_edges = {}
for seen_roi, f_roi in enumerate(df_slide_roi["ROI"].unique()): ## for each ROI
roi = f_roi.replace(".txt", "")
slide = df_slide_roi.loc[df_slide_roi["ROI"] == f_roi, "Slide"].values[0]
f_cytof_im = "{}_{}.pkl".format(slide, roi)
if not f_cytof_im in os.listdir(os.path.join(outdir, "cytof_images")):
print("{} not found, skip".format(f_cytof_im))
continue
cytof_im = load_CytofImage(os.path.join(outdir, "cytof_images", f_cytof_im))
df_feat = getattr(cytof_im, n_attr)
n_cell = len(df_feat)
dist_matrix = dist.pairwise(df_feat.loc[:, ['coordinate_x', 'coordinate_y']].values)
if seen_roi==0:
# all gene (marker) columns
marker_col_all = [x for x in df_feat.columns if "cell_{}".format(accumul_type) in x]
marker_all = [x.split('(')[0] for x in marker_col_all]
n_marker = len(marker_col_all)
# corresponding marker positive info file
df_info_cell = getattr(cytof_im,"cell_count_{}_{}".format(feat_name,accumul_type))
thresholds = df_info_cell["threshold"].values#[marker_idx]
n_edges = 0
# expected_percentage = np.zeros((n_marker, n_marker))
# edge_percentage = np.zeros_like(expected_percentage)
edge_nums = np.zeros((n_marker, n_marker))
# interaction
cluster_sub = []
for i_cell in range(n_cell):
_temp = set()
for k in range(n_marker):
if df_feat[marker_col_all[k]].values[i_cell] > thresholds[k]:
_temp = _temp | {k}
cluster_sub.append(_temp)
for i in tqdm(range(n_cell)):
for j in range(n_cell):
if dist_matrix[i, j] > 0 and dist_matrix[i, j] < thres_dist:
n_edges += 1
for m in cluster_sub[i]:
for n in cluster_sub[j]:
edge_nums[m, n] += 1
edge_percentages[roi] = edge_nums#/n_edges
num_edges[roi] = n_edges
return edge_percentages, num_edges, marker_all, marker_col_all
def interaction_analysis(df_slide_roi,
outdir,
feature_type,
accumul_type,
interact_markers="all",
normq=75,
level="slide",
thres_dist=50,
clustergrid=None):
"""
"""
assert level in ["slide", "roi"], "Only slide or roi levels are accepted!"
assert feature_type in ["original", "normed", "scaled"]
if feature_type == "original":
feat_name = ""
elif feature_type == "normed":
feat_name = f"{normq}normed"
else:
feat_name = f"{normq}normed_scaled"
print(feat_name)
dir_cytof_img = os.path.join(outdir, "cytof_images")
expected_percentages, _, num_cells, marker_all_, marker_col_all_ = \
_gather_roi_co_exp(df_slide_roi, outdir, feat_name, accumul_type)
edge_percentages, num_edges, marker_all, marker_col_all = \
_gather_roi_interact(df_slide_roi, outdir, feat_name, accumul_type, interact_markers="all",
thres_dist=thres_dist)
if level == "slide":
for slide in df_slide_roi["Slide"].unique(): ## for each slide
for seen_roi, f_roi in enumerate(df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"]): ## for each ROI
roi = f_roi.replace(".txt", "")
if roi not in expected_percentages:
continue
if seen_roi == 0:
expected_percentages[slide] = expected_percentages[roi]
edge_percentages[slide] = edge_percentages[roi]
num_edges[slide] = num_edges[roi]
num_cells[slide] = num_cells[roi]
else:
expected_percentages[slide] += expected_percentages[roi]
edge_percentages[slide] += edge_percentages[roi]
num_edges[slide] += num_edges[roi]
num_cells[slide] += num_cells[roi]
expected_percentages.pop(roi)
edge_percentages.pop(roi)
num_edges.pop(roi)
num_cells.pop(roi)
if interact_markers != "all":
assert (isinstance(interact_markers, list) and all([x in marker_all for x in interact_markers]))
marker_idx = np.array([marker_all.index(x) for x in interact_markers])
marker_all = [marker_all[x] for x in marker_idx]
marker_col_all = [marker_col_all[x] for x in marker_idx]
else:
marker_idx = np.arange(len(marker_all))
interacts = {}
for key, edge_percentage in edge_percentages.items():
expected_percentage = expected_percentages[key] / num_cells[key] ** 2
edge_percentage = edge_percentage / num_edges[key]
# Normalize
edge_percentage_norm = np.log10(edge_percentage / expected_percentage + 0.1)
# Fix Nan
edge_percentage_norm[np.isnan(edge_percentage_norm)] = np.log10(1 + 0.1)
interacts[key] = edge_percentage_norm
# plot
for f_key, interact_ in interacts.items():
interact = interact_[marker_idx, :][:, marker_idx]
plt.figure(figsize=(6, 6))
ax = sns.heatmap(interact, center=np.log10(1 + 0.1),
cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=interact_markers, yticklabels=interact_markers)
ax.set_aspect('equal')
plt.title(f_key)
plt.show()
if clustergrid is None:
plt.figure()
clustergrid = sns.clustermap(interact, center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=interact_markers, yticklabels=interact_markers, figsize=(6, 6))
plt.title(f_key)
plt.show()
plt.figure()
sns.clustermap(
interact[clustergrid.dendrogram_row.reordered_ind, :][:, clustergrid.dendrogram_row.reordered_ind],
center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=np.array(interact_markers)[clustergrid.dendrogram_row.reordered_ind],
yticklabels=np.array(interact_markers)[clustergrid.dendrogram_row.reordered_ind],
figsize=(6, 6), row_cluster=False, col_cluster=False)
plt.title(f_key)
plt.show()
return interacts, clustergrid
###########################################################
######## Pheno-Graph clustering analysis functions ########
###########################################################
def clustering_phenograph(cohort_file, outdir, normq=75, feat_comb="all", k=None, save_vis=False, pheno_markers="all"):
"""Perform Pheno-graph clustering for the cohort
Inputs:
cohort_file = a .csv file include the whole cohort
outdir = output saving directory, previously saved cytof_img class instances in .pkl files
normq = q value for quantile normalization
feat_comb = desired feature combination to be used for phenograph clustering, acceptable choices: "all",
"cell_sum", "cell_ave", "cell_sum_only", "cell_ave_only" (Default="all")
k = number of initial neighbors to run Pheno-graph (Default=None)
If k is not provided, k is set to N / 100, where N is the total number of single cells
save_vis = a flag indicating whether to save the visualization output (Default=False)
pheno_markers = a list of markers used in phenograph clustering (must be a subset of cytof_img.markers)
Outputs:
df_all = a dataframe of features for all cells in the cohort, with the clustering output saved in the column
'phenotype_total{n_community}', where n_community stands for the total number of communities defined by the cohort
Also, each individual cytof_img class instances will be updated with 2 new attributes:
1)"num phenotypes ({feat_comb}_{normq}normed_{k})"
2)"phenotypes ({feat_comb}_{normq}normed_{k})"
feat_names = feature names (columns) used to generate PhenoGraph output
k = the initial number of k used to run PhenoGraph
pheno_name = the column name of the added column indicating phenograph cluster
vis_savedir = the directory to save the visualization output
markers = the list of markers used (minimal, for visualization purposes)
"""
vis_savedir = ""
feat_groups = {
"all": ["cell_sum", "cell_ave", "cell_morphology"],
"cell_sum": ["cell_sum", "cell_morphology"],
"cell_ave": ["cell_ave", "cell_morphology"],
"cell_sum_only": ["cell_sum"],
"cell_ave_only": ["cell_ave"]
}
assert feat_comb in feat_groups.keys(), f"{feat_comb} not supported!"
feat_name = f"_{normq}normed_scaled"
n_attr = f"df_feature{feat_name}"
dfs = {}
cytof_ims = {}
df_io = pd.read_csv(os.path.join(outdir, "input_output.csv"))
df_slide_roi = pd.read_csv(cohort_file)
# load all scaled feature in the cohort
for i in df_io.index:
f_out = df_io.loc[i, "output_file"]
f_roi = f_out.split('/')[-1].split('.pkl')[0]
if not os.path.isfile(f_out):
print("{} not found, skip".format(f_out))
continue
cytof_img = load_CytofImage(f_out)
if i == 0:
dict_feat = cytof_img.features
markers = cytof_img.markers
cytof_ims[f_roi] = cytof_img
dfs[f_roi] = getattr(cytof_img, n_attr)
feat_names = []
for y in feat_groups[feat_comb]:
if "morphology" in y:
feat_names += dict_feat[y]
else:
if pheno_markers == "all":
feat_names += dict_feat[y]
pheno_markers = markers
else:
assert isinstance(pheno_markers, list)
ids = [markers.index(x) for x in pheno_markers]
feat_names += [dict_feat[y][x] for x in ids]
# concatenate feature dataframes of all rois in the cohort
df_all = pd.concat([_ for key, _ in dfs.items()])
# set number of nearest neighbors k and run PhenoGraph for phenotype clustering
k = k if k else int(df_all.shape[0] / 100) # 100
communities, graph, Q = phenograph.cluster(df_all[feat_names], k=k, n_jobs=-1) # run PhenoGraph
n_community = len(np.unique(communities))
# Visualize
## project to 2D
umap_2d = umap.UMAP(n_components=2, init='random', random_state=0)
proj_2d = umap_2d.fit_transform(df_all[feat_names])
# plot together
print("Visualization in 2d - cohort")
plt.figure(figsize=(4, 4))
plt.title("cohort")
sns.scatterplot(x=proj_2d[:, 0], y=proj_2d[:, 1], hue=communities, palette='tab20',
# legend=legend,
hue_order=np.arange(n_community))
plt.axis('tight')
plt.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
if save_vis:
vis_savedir = os.path.join(outdir, "phenograph_{}_{}normed_{}".format(feat_comb, normq, k))
if not os.path.exists(vis_savedir):
os.makedirs(vis_savedir)
plt.savefig(os.path.join(vis_savedir, "cluster_scatter.png"))
plt.show()
# attach clustering output to df_all
pheno_name = f'phenotype_total{n_community}'
df_all[pheno_name] = communities
df_all['{}_projx'.format(pheno_name)] = proj_2d[:,0]
df_all['{}_projy'.format(pheno_name)] = proj_2d[:,1]
return df_all, feat_names, k, pheno_name, vis_savedir, markers
def _gather_roi_pheno(df_slide_roi, df_all):
"""Split whole df into df for each ROI"""
pheno_roi = {}
for i in df_slide_roi.index:
path_i = df_slide_roi.loc[i, "path"]
roi_i = df_slide_roi.loc[i, "ROI"]
f_in = os.path.join(path_i, roi_i)
cond = df_all["filename"] == f_in
pheno_roi[roi_i.replace(".txt", "")] = df_all.loc[cond, :]
return pheno_roi
def _vis_cell_phenotypes(df_feat, communities, n_community, markers, list_features, accumul_type="sum", savedir=None, savename=""):
""" Visualize cell phenotypes for a given dataframe of feature
Args:
df_feat: a dataframe of features
communities: a list of communities (can be a subset of the cohort communities, but should be consistent with df_feat)
n_community: number of communities in the cohort (n_community >= number of unique values in communities)
markers: a list of markers used in CyTOF image (to be present in the heatmap visualization)
list_features: a list of feature names (consistent with columns in df_feat)
accumul_type: feature aggregation type, choose from "sum" and "ave" (default="sum")
savedir: results saving directory. If not None, visualization plots will be saved in the desired directory (default=None)
Returns:
cell_cluster: a (N, M) matrix, where N = # of clustered communities, and M = # of markers
cell_cluster_norm: the normalized form of cell_cluster (normalized by subtracting the median value)
"""
assert accumul_type in ["sum", "ave"], "Wrong accumulation type! Choose from 'sum' and 'ave'!"
cell_cluster = np.zeros((n_community, len(markers)))
for cluster in range(len(np.unique(communities))):
df_sub = df_feat[communities == cluster]
if df_sub.shape[0] == 0:
continue
for i, feat in enumerate(list_features): # for each feature in the list of features
cell_cluster[cluster, i] = np.average(df_sub[feat])
cell_cluster_norm = cell_cluster - np.median(cell_cluster, axis=0)
sns.heatmap(cell_cluster_norm, # cell_cluster - np.median(cell_cluster, axis=0),#
cmap='magma',
xticklabels=markers,
yticklabels=np.arange(len(np.unique(communities)))
)
plt.xlabel("Markers - {}".format(accumul_type))
plt.ylabel("Phenograph clusters")
plt.title("normalized expression - cell {}".format(accumul_type))
savename += "_cell_{}.png".format(accumul_type)
if savedir is not None:
if not os.path.exists(savedir):
os.makedirs(savedir)
plt.savefig(os.path.join(savedir, savename))
plt.show()
return cell_cluster, cell_cluster_norm
def vis_phenograph(df_slide_roi, df_all, pheno_name, markers, used_feat, level="cohort", accumul_type="sum",
to_save=False, savepath="./", vis_scatter=False):
"""
Args:
df_slide_roi = a dataframe with slide-roi correspondence information included
df_all = dataframe with feature and clustering results included
pheno_name = name (key) of the phenograph output
markers = a (minimal) list of markers used in Pheno-Graph (to visualize)
list_feat = a list of features used (should be consistent with columns available in df_all)
level = level to visualize, choose from "cohort", "slide", or "roi" (default="cohort")
accumul_type = type of feature accumulation used (default="sum")
to_save = a flag indicating whether or not save output (default=False)
savepath = visualization saving directory (default="./")
"""
if to_save:
if not os.path.exists(savepath):
os.makedirs
# features used for accumul_type
ids = [i for (i,x) in enumerate(used_feat) if re.search(".{}".format(accumul_type), x)]
list_feat = [used_feat[i] for i in ids]
'''# features used for cell ave
accumul_type = "ave"
ids = [i for (i,x) in enumerate(used_feats[key]) if re.search(".{}".format(accumul_type), x)]
list_feats[accumul_type] = [used_feats[key][i] for i in ids]
list_feat_morph = [x for x in used_feats[key] if x not in list_feats["sum"]+list_feats["ave"]]'''
if accumul_type == "sum":
suffix = "_cell_sum"
elif accumul_type == "ave":
suffix = "_cell_ave"
assert level in ["cohort", "slide", "roi"], "Only 'cohort', 'slide' or 'roi' levels are accepted!"
'''df_io = pd.read_csv(os.path.join(outdir, "input_output.csv"))'''
n_community = len(df_all[pheno_name].unique())
if level == "cohort":
phenos = {level: df_all}
else:
phenos = _gather_roi_pheno(df_slide_roi, df_all)
if level == "slide":
for slide in df_io["Slide"].unique(): # for each slide
for seen_roi, roi_i in enumerate(df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"]): ## for each ROI
f_roi = roi_i.replace(".txt", "")
if seen_roi == 0:
phenos[slide] = phenos[f_roi]
else:
phenos[slide] = pd.concat([phenos[slide], phenos[f_roi]])
phenos.pop(f_roi)
savename = ""
for key, df_pheno in phenos.items():
if to_save:
savepath_ = os.path.join(savepath, level)
savename = key
communities = df_pheno[pheno_name]
_vis_cell_phenotypes(df_pheno, communities, n_community, markers, list_feat, accumul_type,
savedir=savepath_, savename=savename)
# visualize scatter (2-d projection)
if vis_scatter:
proj_2d = df_pheno[['{}_projx'.format(pheno_name), '{}_projy'.format(pheno_name)]].to_numpy()
# print("Visualization in 2d - cohort")
plt.figure(figsize=(4, 4))
plt.title("cohort")
sns.scatterplot(x=proj_2d[:, 0], y=proj_2d[:, 1], hue=communities, palette='tab20',
# legend=legend,
hue_order=np.arange(n_community))
plt.axis('tight')
plt.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
if to_save:
plt.savefig(os.path.join(savepath_, "scatter_{}.png".format(savename)))
plt.show()
return phenos
import sklearn.neighbors
from sklearn.neighbors import kneighbors_graph as skgraph
from sklearn.metrics import DistanceMetric# from sklearn.neighbors import DistanceMetric
from scipy import sparse as sp
import networkx as nx
def _gather_roi_distances(df_slide_roi, outdir, name_pheno, thres_dist=50):
dist = DistanceMetric.get_metric('euclidean')
dist_matrices = {}
for i, f_roi in enumerate(df_slide_roi['ROI'].unique()):
roi = f_roi.replace('.txt', '')
slide = df_slide_roi.loc[df_slide_roi["ROI"] == f_roi, "Slide"].values[0]
f_cytof_im = "{}_{}.pkl".format(slide, roi)
if not f_cytof_im in os.listdir(os.path.join(outdir, "cytof_images")):
print("{} not found, skip".format(f_cytof_im))
continue
cytof_im = load_CytofImage(os.path.join(outdir, "cytof_images", f_cytof_im))
df_sub = cytof_im.df_feature
dist_matrices[roi] = {}
dist_matrices[roi]['dist'] = dist.pairwise(df_sub.loc[:, ['coordinate_x', 'coordinate_y']].values)
phenograph = getattr(cytof_im, 'phenograph')[name_pheno]
cluster = phenograph['clusters'].values
if i == 0:
n_cluster = phenograph['num_community']
# expected percentage
expected_percentage = np.zeros((n_cluster, n_cluster))
for _i in range(n_cluster):
for _j in range(n_cluster):
expected_percentage[_i, _j] = sum(cluster == _i) * sum(cluster == _j) #/ len(df_sub)**2
dist_matrices[roi]['expected_percentage'] = expected_percentage
dist_matrices[roi]['num_cell'] = len(df_sub)
# edge num
edge_nums = np.zeros_like(expected_percentage)
dist_matrix = dist_matrices[roi]['dist']
n_cells = dist_matrix.shape[0]
for _i in range(n_cells):
for _j in range(n_cells):
if dist_matrix[_i, _j] > 0 and dist_matrix[_i, _j] < thres_dist:
edge_nums[cluster[_i], cluster[_j]] += 1
# edge_percentages = edge_nums/np.sum(edge_nums)
dist_matrices[roi]['edge_nums'] = edge_nums
return dist_matrices
def _gather_roi_kneighbor_graphs(df_slide_roi, outdir, name_pheno, k=8):
graphs = {}
for i, f_roi in enumerate(df_slide_roi['ROI'].unique()):
roi = f_roi.replace('.txt', '')
f_cytof_im = "{}.pkl".format(roi)
if not f_cytof_im in os.listdir(os.path.join(outdir, "cytof_images")):
print("{} not found, skip".format(f_cytof_im))
continue
cytof_im = load_CytofImage(os.path.join(outdir, "cytof_images", f_cytof_im))
df_sub = cytof_im.df_feature
graph = skgraph(np.array(df_sub.loc[:, ['coordinate_x', 'coordinate_y']]), n_neighbors=k, mode='distance')
graph.toarray()
I, J, V = sp.find(graph)
graphs[roi] = {}
graphs[roi]['I'] = I # Start (center)
graphs[roi]['J'] = J # End
graphs[roi]['V'] = V
graphs[roi]['graph'] = graph
phenograph = getattr(cytof_im, 'phenograph')[name_pheno]
cluster = phenograph['clusters'].values
if i == 0:
n_cluster = phenograph['num_community']
# Edge type summary
edge_nums = np.zeros((n_cluster, n_cluster))
for _i, _j in zip(I, J):
edge_nums[cluster[_i], cluster[_j]] += 1
graphs[roi]['edge_nums'] = edge_nums
'''edge_percentages = edge_nums/np.sum(edge_nums)'''
expected_percentage = np.zeros((n_cluster, n_cluster))
for _i in range(n_cluster):
for _j in range(n_cluster):
expected_percentage[_i, _j] = sum(cluster == _i) * sum(cluster == _j) #/ len(df_sub)**2
graphs[roi]['expected_percentage'] = expected_percentage
graphs[roi]['num_cell'] = len(df_sub)
return graphs
def interaction_analysis(df_slide_roi, outdir, name_pheno, method="distance", k=8, thres_dist=50, level="slide", clustergrid=None):
assert method in ["distance", "graph"], "Method can be either 'distance' or 'graph'!"
if method == "distance":
info = _gather_roi_distances(df_slide_roi, outdir, name_pheno, thres_dist)
else:
info = _gather_roi_kneighbor_graphs(df_slide_roi, outdir, name_pheno, k)
interacts = {}
if level == "slide":
for slide in df_slide_roi["Slide"].unique():
for seen_roi, f_roi in enumerate(df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"]):
roi = f_roi.replace(".txt", "")
if seen_roi == 0:
info[slide] = {}
info[slide]['edge_nums'] = info[roi]['edge_nums']
info[slide]['expected_percentage'] = info[roi]['expected_percentage']
info[slide]['num_cell'] = info[roi]['num_cell']
else:
info[slide]['edge_nums'] += info[roi]['edge_nums']
info[slide]['expected_percentage'] += info[roi]['expected_percentage']
info[slide]['num_cell'] += info[roi]['num_cell']
info.pop(roi)
for key, item in info.items():
edge_percentage = item['edge_nums'] / np.sum(item['edge_nums'])
expected_percentage = item['expected_percentage'] / item['num_cell'] ** 2
# Normalize
interact_norm = np.log10(edge_percentage/expected_percentage + 0.1)
# Fix Nan
interact_norm[np.isnan(interact_norm)] = np.log10(1 + 0.1)
interacts[key] = interact_norm
# plot
for f_key, interact in interacts.items():
plt.figure(figsize=(6, 6))
ax = sns.heatmap(interact, center=np.log10(1 + 0.1),
cmap='RdBu_r', vmin=-1, vmax=1)
ax.set_aspect('equal')
plt.title(f_key)
plt.show()
if clustergrid is None:
plt.figure()
clustergrid = sns.clustermap(interact, center=np.log10(1 + 0.1),
cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=np.arange(interact.shape[0]),
yticklabels=np.arange(interact.shape[0]),
figsize=(6, 6))
plt.title(f_key)
plt.show()
plt.figure()
sns.clustermap(interact[clustergrid.dendrogram_row.reordered_ind, :]\
[:, clustergrid.dendrogram_row.reordered_ind],
center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=clustergrid.dendrogram_row.reordered_ind,
yticklabels=clustergrid.dendrogram_row.reordered_ind,
figsize=(6, 6), row_cluster=False, col_cluster=False)
plt.title(f_key)
plt.show()
return interacts, clustergrid |