File size: 90,825 Bytes
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ed68b
 
 
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ed68b
 
 
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ed68b
 
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ed68b
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ed68b
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
import itertools
import re
import warnings
import os
import sys
import copy
import pickle as pkl
import numpy as np
import pandas as pd
import skimage
from skimage.segmentation import mark_boundaries
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm

import matplotlib.pyplot
matplotlib.pyplot.switch_backend('Agg') 

import seaborn as sns
import phenograph

# suppress numba deprecation warning
# ref: https://github.com/Arize-ai/phoenix/pull/799
with warnings.catch_warnings():
    from numba.core.errors import NumbaWarning

    warnings.simplefilter("ignore", category=NumbaWarning)
    import umap
    from umap import UMAP


from typing import Union, Optional, Type, Tuple, List, Dict
from collections.abc import Callable
from scipy import sparse as sp
from sklearn.neighbors import kneighbors_graph as skgraph  # , DistanceMetric
from sklearn.metrics import DistanceMetric
from sklearn.cluster import KMeans
from itertools import product


## added for test
import platform
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # cytof root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
from hyperion_segmentation import cytof_nuclei_segmentation, cytof_cell_segmentation, visualize_segmentation
from cytof.utils import (save_multi_channel_img, generate_color_dict, show_color_table, 
visualize_scatter, visualize_expression, _get_thresholds, _generate_summary)

def get_name(dfrow):
    return os.path.join(dfrow['path'], dfrow['ROI'])


class CytofImage():
    morphology = ["area", "convex_area", "eccentricity", "extent",
                  "filled_area", "major_axis_length", "minor_axis_length",
                  "orientation", "perimeter", "solidity", "pa_ratio"]

    def __init__(self, df: Optional[pd.DataFrame] = None, slide: str = "", roi: str = "", filename: str = ""):
        self.df       = df
        self.slide    = slide
        self.roi      = roi
        self.filename = filename
        self.columns  = None # column names in original cytof data (dataframe)
        self.markers  = None # protein markers
        self.labels   = None # metal isotopes used to tag protein

        self.image    = None
        self.channels = None # channel names correspond to each channel of self.image

        self.features = None


    def copy(self):
        '''
        Creates a deep copy of the current CytofImage object and return it
        '''
        new_instance = type(self)(self.df.copy(), self.slide, self.roi, self.filename)
        new_instance.columns = copy.deepcopy(self.columns)
        new_instance.markers = copy.deepcopy(self.markers)
        new_instance.labels = copy.deepcopy(self.labels)
        new_instance.image = copy.deepcopy(self.image)
        new_instance.channels = copy.deepcopy(self.channels)
        new_instance.features = copy.deepcopy(self.features)
        return new_instance


    def __str__(self):
        return f"CytofImage slide {self.slide}, ROI {self.roi}"

    def __repr__(self):
        return f"CytofImage(slide={self.slide}, roi={self.roi})"

    def save_cytof(self, savename: str):
        directory = os.path.dirname(savename)
        if not os.path.exists(directory):
            os.makedirs(directory)
        pkl.dump(self, open(savename, "wb"))

    def get_markers(self, imarker0: Optional[str] = None):
        """ 
        Get     (1) the channel names correspond to each image channel
                (2) a list of protein markers used to obtain the CyTOF image
                (3) a list of labels tagged to each of the protein markers
        """
        self.columns = list(self.df.columns)
        if imarker0 is not None:  # if the index of the 1st marker provided
            self.raw_channels = self.columns[imarker0:]
        else:  # assumption: channel names have the common expression: marker(label*)
            pattern = "\w+.*\(\w+\)"
            self.raw_channels = [re.findall(pattern, t)[0] for t in self.columns if len(re.findall(pattern, t)) > 0]

        self.raw_markers = [x.split('(')[0] for x in self.raw_channels]
        self.raw_labels  = [x.split('(')[-1].split(')')[0] for x in self.raw_channels]

        self.channels = self.raw_channels.copy()
        self.markers  = self.raw_markers.copy()
        self.labels   = self.raw_labels.copy()
        
    def export_feature(self, feat_name: str, savename: Optional[str] = None):
        """ Export a set of specified feature """
        savename = savename if savename else f"{feat_name}.csv"
        savename = savename if savename.endswith(".csv") else f"{feat_name}.csv"
        df = getattr(self, feat_name)
        df.to_csv(savename)

    def preprocess(self):
        nrow = int(max(self.df['Y'].values)) + 1
        ncol = int(max(self.df['X'].values)) + 1
        n = len(self.df)
        if nrow * ncol > n:
            df2 = pd.DataFrame(np.zeros((nrow * ncol - n, len(self.df.columns)), dtype=int),
                               columns=self.df.columns)
            self.df = pd.concat([self.df, df2])

    def quality_control(self, thres: int = 50) -> None:
        setattr(self, "keep", False)
        if (max(self.df['X']) < thres) \
                or (max(self.df['Y']) < thres):
            print("At least one dimension of the image {}-{} is smaller than {}, exclude from analyzing" \
                  .format(self.slide, self.roi, thres))
            self.keep = False

    def check_channels(self,
                       channels: Optional[List] = None,
                       xlim: Optional[List] = None,
                       ylim: Optional[List] = None,
                       ncols: int = 5,
                       vis_q: float = 0.9,
                       colorbar: bool = False,
                       savedir: Optional[str] = None,
                       savename: str = "check_channels"
                       ):# -> Optional[matplotlib.figure.Figure]:
        """
        xlim = a list of 2 numbers indicating the ylimits to show image (default=None)
        ylim = a list of 2 numbers indicating the ylimits to show image (default=None)
        ncols = number of subplots per row (default=5)
        vis_q = percentile q used to normalize image before visualization  (default=0.9)
        """
        show = True if savedir is None else False
        if channels is not None:
            if not all([cl.lower() in self.channels for cl in channels]):
                print("At least one of the channels not available, visualizing all channels instead!")
                channels = None
        if channels is None:  # if no desired channels specified, check all channels
            channels = self.channels
        nrow = max(self.df['Y'].values) + 1
        ncol = max(self.df['X'].values) + 1
        if len(channels) <= ncols:
            ax_nrow = 1
            ax_ncol = len(channels)
        else:
            ax_ncol = ncols
            ax_nrow = int(np.ceil(len(channels) / ncols))

        fig, axes = plt.subplots(ax_nrow, ax_ncol, figsize=(3 * ax_ncol, 3 * ax_nrow))
        if ax_nrow == 1:
            axes = np.array([axes])
            if ax_ncol == 1:
                axes = np.expand_dims(axes, axis=1)
        for i, _ in enumerate(channels):
            _ax_nrow = int(np.floor(i / ax_ncol))
            _ax_ncol = i % ax_ncol
            image = self.df[_].values.reshape(nrow, ncol)
            percentile_q = np.quantile(image, vis_q) if np.quantile(image, vis_q)!= 0 else 1
            image = np.clip(image / percentile_q, 0, 1)
            axes[_ax_nrow, _ax_ncol].set_title(_)
            if xlim is not None:
                image = image[:, xlim[0]:xlim[1]]
            if ylim is not None:
                image = image[ylim[0]:ylim[1], :]
            im = axes[_ax_nrow, _ax_ncol].imshow(image, cmap="gray")
            if colorbar:
                fig.colorbar(im, ax=axes[_ax_nrow, _ax_ncol])
        plt.tight_layout()
        if show:
            plt.show()
        else:
            plt.savefig(os.path.join(savedir, f"{savename}.png"))
            return fig


    def get_image(self, channels: List =None, inplace: bool = True, verbose=False):
        """ 
        Get channel images based on provided channels. By default, get channel images correspond to all channels
        """
        if channels is not None:
            if not all([cl in self.channels for cl in channels]):
                print("At least one of the channels not available, using default all channels instead!")
                channels = self.channels
                inplace = True
        else:
            channels = self.channels
            inplace = True
        nc = len(channels)
        nrow = max(self.df['Y'].values) + 1
        ncol = max(self.df['X'].values) + 1
        if verbose:
            print("Output image shape: [{}, {}, {}]".format(nrow, ncol, nc))

        target_image = np.zeros([nrow, ncol, nc], dtype=float)
        for _nc in range(nc):
            target_image[..., _nc] = self.df[channels[_nc]].values.reshape(nrow, ncol)
        if inplace:
            self.image = target_image
        else:
            return target_image

    def visualize_single_channel(self,
                                 channel_name: str,
                                 color: str,
                                 quantile: float = None,
                                 visualize: bool = False):
        """
        Visualize one channel of the multi-channel image, with a specified color from red, green, and blue
        """
        channel_id = self.channels.index(channel_name)
        if quantile is None:  # calculate 99th percentile by default
            quantile = np.quantile(self.image[..., channel_id], 0.99)

        channel_id_ = ["red", "green", "blue"].index(color)  # channel index

        vis_im = np.zeros((self.image.shape[0], self.image.shape[1], 3))
        gs = np.clip(self.image[..., channel_id] / quantile, 0, 1)  # grayscale
        vis_im[..., channel_id_] = gs
        vis_im = (vis_im * 255).astype(np.uint8)

        if visualize:
            fig, ax = plt.subplots(1, 1)
            ax.imshow(vis_im)
            plt.show()
        return vis_im

    def visualize_channels(self,
                           channel_ids: Optional[List]=None,
                           channel_names: Optional[List]=None,
                           quantiles: Optional[List]=None,
                           visualize: Optional[bool]=False,
                           show_colortable: Optional[bool]=False
                           ):
        """
        Visualize multiple channels simultaneously
        """
        assert channel_ids or channel_names, 'At least one should be provided, either "channel_ids" or "channel_names"!'
        if channel_ids is None:
            channel_ids = [self.channels.index(n) for n in channel_names]
        else:
            channel_names = [self.channels[i] for i in channel_ids]
        assert len(channel_ids) <= 7, "No more than 6 channels can be visualized simultaneously!"
        if len(channel_ids) > 3:
            warnings.warn(
                "Visualizing more than 3 channels the same time results in deteriorated visualization. \
                It is not recommended!")

        print("Visualizing channels: {}".format(', '.join(channel_names)))
        full_colors = ['red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'white']
        color_values = [(1, 0, 0), (0, 1, 0), (0, 0, 1),
                        (0, 1, 1), (1, 0, 1), (1, 1, 0),
                        (1, 1, 1)]
        info = ["{} in {}\n".format(marker, c) for (marker, c) in \
                zip([self.channels[i] for i in channel_ids], full_colors[:len(channel_ids)])]
        print("Visualizing... \n{}".format(''.join(info)))
        merged_im = np.zeros((self.image.shape[0], self.image.shape[1], 3))
        if quantiles is None:
            quantiles = [np.quantile(self.image[..., _], 0.99) for _ in channel_ids]

        # max_vals = []
        for _ in range(min(len(channel_ids), 3)):  # first 3 channels, assign colors R, G, B
            gs = np.clip(self.image[..., channel_ids[_]] / quantiles[_], 0, 1)  # grayscale
            merged_im[..., _] = gs * 255
            max_val = [0, 0, 0]
            max_val[_] = gs.max() * 255
            # max_vals.append(max_val)

        chs = [[1, 2], [0, 2], [0, 1], [0, 1, 2]]
        chs_id = 0
        while _ < len(channel_ids) - 1:
            _ += 1
            max_val = [0, 0, 0]
            for j in chs[chs_id]:
                gs = np.clip(self.image[..., channel_ids[_]] / quantiles[_], 0, 1)
                merged_im[..., j] += gs * 255  # /2
                merged_im[..., j] = np.clip(merged_im[..., j], 0, 255)
                max_val[j] = gs.max() * 255
            chs_id += 1
            # max_vals.append(max_val)
        merged_im = merged_im.astype(np.uint8)
        if visualize:
            fig, ax = plt.subplots(1, 1)
            ax.imshow(merged_im)
            plt.show()

        vis_markers = [self.markers[i] if i < len(self.markers) else self.channels[i] for i in channel_ids]

        color_dict = dict((n, c) for (n, c) in zip(vis_markers, color_values[:len(channel_ids)]))
        if show_colortable:
            show_color_table(color_dict=color_dict, title="color dictionary", emptycols=3, sort_names=True)
        return merged_im, quantiles, color_dict

    def remove_special_channels(self, channels: List):
        """
        Given a list of channels, remove them from the class. This typically happens when users define certain channels to be the nuclei for special processing.
        """
        for channel in channels:
            if channel not in self.channels:
                print("Channel {} not available, escaping...".format(channel))
                continue
            idx = self.channels.index(channel)
            self.channels.pop(idx)
            self.markers.pop(idx)
            self.labels.pop(idx)
            self.df.drop(columns=channel, inplace=True)

    def define_special_channels(self, channels_dict: Dict, verbose=False, rm_key: str = 'nuclei'):
        '''
        Special channels (antibodies) commonly found to define cell componenets (e.g. nuclei or membranes)
        '''
        channels_rm = []
        for new_name, old_names in channels_dict.items():

            if len(old_names) == 0:
                continue

            old_nms = []
            for i, old_name in enumerate(old_names):
                if old_name not in self.channels:
                    warnings.warn('{} is not available!'.format(old_name))
                    continue
                old_nms.append(old_name)
            if verbose:
                print("Defining channel '{}' by summing up channels: {}.".format(new_name, ', '.join(old_nms)))
            if len(old_nms) > 0:
                # only add channels to removal list if matching remove key
                if new_name == rm_key:
                    channels_rm += old_nms
                for i, old_name in enumerate(old_nms):
                    if i == 0:
                        self.df[new_name] = self.df[old_name]
                    else:
                        self.df[new_name] += self.df[old_name]
                if new_name not in self.channels:
                    self.channels.append(new_name)

        self.get_image(verbose=verbose)
        if hasattr(self, "defined_channels"):
            for key in channels_dict.keys():
                self.defined_channels.add(key)
        else:
            setattr(self, "defined_channels", set(list(channels_dict.keys())))   
        return channels_rm

    def get_seg(
        self, 
        use_membrane: bool = True, 
        radius: int = 5, 
        sz_hole: int = 1, 
        sz_obj: int = 3,
        min_distance: int = 2, 
        fg_marker_dilate: int = 2, 
        bg_marker_dilate: int = 2, 
        show_process: bool = False,
        verbose: bool = False):
        channels = [x.lower() for x in self.channels]
        assert 'nuclei' in channels, "a 'nuclei' channel is required for segmentation!"
        nuclei_img = self.image[..., self.channels.index('nuclei')]

        if show_process:
            print("Nuclei segmentation...")
        # else:
        #     print("Not showing segmentation process")
        nuclei_seg, color_dict = cytof_nuclei_segmentation(nuclei_img, show_process=show_process,
                                                           size_hole=sz_hole, size_obj=sz_obj,
                                                           fg_marker_dilate=fg_marker_dilate,
                                                           bg_marker_dilate=bg_marker_dilate,
                                                           min_distance=min_distance)

        membrane_img = self.image[..., self.channels.index('membrane')] \
            if (use_membrane and 'membrane' in self.channels) else None
        if show_process:
            print("Cell segmentation...")
        cell_seg, _ = cytof_cell_segmentation(nuclei_seg, radius, membrane_channel=membrane_img,
                                              show_process=show_process, colors=color_dict)

        self.nuclei_seg = nuclei_seg
        self.cell_seg   = cell_seg
        return nuclei_seg, cell_seg

    def visualize_seg(self, segtype: str = "cell", seg=None, show: bool = False, bg_label: int = 1):
        assert segtype in ["nuclei", "cell"], f"segtype {segtype} not supported. Accepted cell type: ['nuclei', 'cell']"
        # nuclei in red, membrane in green
        if "membrane" in self.channels:
            channel_ids = [self.channels.index(_) for _ in ["nuclei", "membrane"]]
        else:

            # visualize one marker channel and nuclei channel
            channel_ids = [self.channels.index("nuclei"), 0]

        if seg is None:
            if segtype == "cell":
                seg = self.cell_seg
                '''# membrane in red, nuclei in green
                channel_ids = [self.channels.index(_) for _ in ["membrane", "nuclei"]]'''
            else:
                seg = self.nuclei_seg

        # mark distinct membrane or nuclei boundary colors
        if segtype == 'cell':
            marked_image = visualize_segmentation(self.image, self.channels, seg, channel_ids=channel_ids, bound_color=(1, 1, 1), show=show, bg_label=bg_label)
        else: # marking nucleus boundaries as blue
            marked_image = visualize_segmentation(self.image, self.channels, seg, channel_ids=channel_ids, bound_color=(1, 1, 0), show=show, bg_label=bg_label)

        seg_color = 'yellow' if segtype=='nuclei' else 'white'
        print(f"{segtype} boundary marked by {seg_color}")
        return marked_image

    def extract_features(self, filename, use_parallel=True, show_sample=False):
        from cytof.utils import extract_feature

        # channel indices correspond to pure markers
        '''pattern = "\w+.*\(\w+\)"
        marker_idx      = [i for (i,x) in enumerate(self.channels) if len(re.findall(pattern, x))>0] '''
        marker_idx = [i for (i, x) in enumerate(self.channels) if x not in self.defined_channels]

        marker_channels = [self.channels[i] for i in marker_idx]  # pure marker channels
        marker_image = self.image[..., marker_idx]  # channel images correspond to pure markers
        morphology = self.morphology
        self.features = {
            "nuclei_morphology": [_ + '_nuclei' for _ in morphology],  # morphology - nuclei level
            "cell_morphology": [_ + '_cell' for _ in morphology],  # morphology - cell level
            "cell_sum": [_ + '_cell_sum' for _ in marker_channels],
            "cell_ave": [_ + '_cell_ave' for _ in marker_channels],
            "nuclei_sum": [_ + '_nuclei_sum' for _ in marker_channels],
            "nuclei_ave": [_ + '_nuclei_ave' for _ in marker_channels],
        }
        self.df_feature = extract_feature(marker_channels, marker_image,
                                          self.nuclei_seg, self.cell_seg,
                                          filename, use_parallel=use_parallel, 
                                          show_sample=show_sample)

    def calculate_quantiles(self, qs: Union[List, int] = 75, savename: Optional[str] = None, verbose: bool = False):
        """
        Calculate the q-quantiles of each marker with cell level summation given the q values
        """
        qs = [qs] if isinstance(qs, int) else qs
        _expressions_cell_sum = []
        quantiles = {}
        colors = cm.rainbow(np.linspace(0, 1, len(qs)))
        for feature_name in self.features["cell_sum"]:  # all cell sum features except for nuclei_cell_sum and membrane_cell_sum
            if feature_name.startswith("nuclei") or feature_name.startswith("membrane"):
                continue
            _expressions_cell_sum.extend(self.df_feature[feature_name])

        plt.hist(np.log2(np.array(_expressions_cell_sum) + 0.0001), 100, density=True)
        for q, c in zip(qs, colors):
            quantiles[q] = np.quantile(_expressions_cell_sum, q / 100)
            plt.axvline(np.log2(quantiles[q]), label=f"{q}th percentile", c=c)
            if verbose:
                print(f"{q}th percentile: {quantiles[q]}")
        plt.xlim(-15, 15)
        plt.xlabel("log2(expression of all markers)")
        plt.legend()
        if savename is not None:
            plt.savefig(savename)
        plt.show()
        # attach quantile dictionary to self
        self.dict_quantiles = quantiles

        print('dict quantiles:', quantiles)
        # return quantiles

    def _vis_normalization(self, savename: Optional[str] = None):
        """
        Compare before and after normalization
        """
        expressions = {}
        expressions["original"] = []

        ## before normalization
        for key, features in self.features.items():
            if key.endswith("morphology"):
                continue
            for feature_name in features:
                if feature_name.startswith('nuclei') or feature_name.startswith('membrane'):
                    continue
                expressions["original"].extend(self.df_feature[feature_name])
        log_exp = np.log2(np.array(expressions['original']) + 0.0001)
        plt.hist(log_exp, 100, density=True, label='before normalization')

        for q in self.dict_quantiles.keys():
            n_attr = f"df_feature_{q}normed"
            expressions[f"{q}_normed"] = []

            for key, features in self.features.items():
                if key.endswith("morphology"):
                    continue
                for feature_name in features:
                    if feature_name.startswith('nuclei') or feature_name.startswith('membrane'):
                        continue
                    expressions[f"{q}_normed"].extend(getattr(self, n_attr)[feature_name])
            plt.hist(expressions[f"{q}_normed"], 100, density=True, label=f"after {q}th percentile normalization")

        plt.legend()
        plt.xlabel('log2(expressions of all markers)')
        plt.ylabel('Frequency')
        if savename is not None:
            plt.savefig(savename)
        plt.show()
        return expressions

    def feature_quantile_normalization(self,
                                       qs: Union[List[int], int] = 75,
                                       vis_compare: bool = True,
                                       savedir: Optional[str] = None):
        """
        Normalize all features with given quantiles except for morphology features
        Args:
            qs: value (int) or values (list of int) of for q-th percentile normalization
            vis_compare: a boolean flag indicating whether or not visualize comparison before and after normalization
            (default=True)
            savedir: saving directory for comparison and percentiles;
            if not None, visualizations of percentiles and comparison before and after normalization will be saved in savedir
            (default=None)

        """
        qs = [qs] if isinstance(qs, int) else qs
        if savedir is not None:
            savename_quantile = os.path.join(savedir, "{}_{}_percentiles.png".format(self.slide, self.roi))
            savename_compare  = os.path.join(savedir, "{}_{}_comparison.png".format(self.slide, self.roi))
        else:
            savename_quantile, savename_compare = None, None
        self.calculate_quantiles(qs, savename=savename_quantile)
        for q, quantile_val in self.dict_quantiles.items():
            n_attr = f"df_feature_{q}normed" # attribute name
            log_normed = copy.deepcopy(self.df_feature)
            for key, features in self.features.items():
                if key.endswith("morphology"):
                    continue
                for feature_name in features:
                    if feature_name.startswith("nuclei") or feature_name.startswith("membrane"):
                        continue
                    # log-quantile normalization
                    log_normed.loc[:, feature_name] = np.log2(log_normed.loc[:, feature_name] / quantile_val + 0.0001)
            setattr(self, n_attr, log_normed)
        if vis_compare:
            _ = self._vis_normalization(savename=savename_compare)


    def save_channel_images(self, savedir: str, channels: Optional[List] = None, ext: str = ".png", quantile_norm: int = 99):
        """
        Save channel images
        """
        if channels is not None:
            if not all([cl in self.channels for cl in channels]):
                print("At least one of the channels not available, saving all channels instead!")
                channels = self.channels
        else:
            channels = self.channels
        '''assert all([x.lower() in channels_temp for x in channels]), "Not all provided channels are available!"'''
        for chn in channels:
            savename = os.path.join(savedir, f"{chn}{ext}")
            #         i = channels_temp.index(chn.lower())
            i = self.channels.index(chn)
            im_temp = self.image[..., i]
            quantile_temp = np.quantile(im_temp, quantile_norm / 100) \
                if np.quantile(im_temp, quantile_norm / 100) != 0 else 1

            im_temp_ = np.clip(im_temp / quantile_temp, 0, 1)
            save_multi_channel_img((im_temp_ * 255).astype(np.uint8), savename)

    def marker_positive(self, feature_type: str = "normed", accumul_type: str = "sum", normq: int = 75):
        assert feature_type in ["original", "normed", "scaled"], 'accepted feature types are "original", "normed", "scaled"'
        if feature_type == "original":
            feat_name = ""
        elif feature_type == "normed":
            feat_name = f"_{normq}normed"
        else:
            feat_name = f"_{normq}normed_scaled"

        n_attr     = f"df_feature{feat_name}"  # class attribute name for feature table
        count_attr = f"cell_count{feat_name}_{accumul_type}"  # class attribute name for feature summary table

        df_feat  = getattr(self, n_attr)
        df_thres = getattr(self, count_attr)

        thresholds_cell_marker = dict((x, y) for (x, y) in zip(df_thres["feature"], df_thres["threshold"]))

        columns = ["id"] + [marker for marker in self.markers]
        df_marker_positive = pd.DataFrame(columns=columns, 
                                          data=np.zeros((len(df_feat), len(self.markers) + 1), type=np.int32))
        df_marker_positive["id"] = df_feat["id"]
        for im, marker in enumerate(self.markers):
            channel_ = f"{self.channels[im]}_cell_{accumul_type}"
            df_marker_positive.loc[df_feat[channel_] > thresholds_cell_marker[channel_], marker] = 1
        setattr(self, f"df_marker_positive{feat_name}", df_marker_positive)


    def marker_positive_summary(self,
                                thresholds: Dict,
                                feat_type: str = "normed", 
                                normq: int = 75,
                                accumul_type: str = "sum"
                                ):

        """
        Generate marker positive summary for CytofImage: 
        Output rendered: f"cell_count_{feat_name}_{aggre}" and f"marker_positive_{feat_name}_{aggre}"
        """

        assert feat_type in ["normed_scaled", "normed", ""], f"feature type {feat_type} not supported!"
        feat_name = f"{feat_type}" if feat_type=="" else f"{normq}{feat_type}" # the attribute name to achieve from cytof_img
        n_attr = f"df_feature{feat_name}" if feat_type=="" else f"df_feature_{feat_name}" # the attribute name to achieve from cytof_img

        df_thres = pd.DataFrame({"feature": thresholds.keys(), "threshold": thresholds.values()})
        df_marker_pos_sum = getattr(self, n_attr).copy()

        keep_feat_set = f"cell_{accumul_type}"

        for key, feat_set in getattr(self, "features").items():
            if key == keep_feat_set:
                marker_set = self.markers
                df_marker_pos_sum_ = df_marker_pos_sum[feat_set].copy().transpose()
                
                comp_cols = list(df_marker_pos_sum_.columns)
                df_marker_pos_sum_.reset_index(names='feature', inplace=True)
                merged  = df_marker_pos_sum_.merge(df_thres, on="feature", how="left")
                df_temp = merged[comp_cols].ge(merged["threshold"], axis=0)
                df_temp.index = merged['feature']
                df_marker_pos_sum[feat_set] = df_temp.transpose()[feat_set]
                map_rename = dict((k, v) for (k,v) in zip(feat_set, marker_set))
                df_marker_pos_sum.rename(columns=map_rename, inplace=True)
            else:        
                df_marker_pos_sum.drop(columns=feat_set, inplace=True)

        df_thres['total number']    = df_temp.count(axis=1).values
        df_thres['positive counts'] = df_temp.sum(axis=1).values
        df_thres['positive ratio']  = df_thres['positive counts'] / df_thres['total number']

        attr_cell_count = f"cell_count_{feat_name}_{accumul_type}"
        attr_marker_pos = f"df_marker_positive_{feat_name}_{accumul_type}"
        setattr(self, attr_cell_count, df_thres)
        setattr(self, attr_marker_pos, df_marker_pos_sum)

        return f"{feat_name}_{accumul_type}"


    def visualize_marker_positive(self,
                                  marker: str,
                                  feature_type: str,
                                  accumul_type: str = "sum",
                                  normq: int = 99,
                                  show_boundary: bool = True,
                                  color_list: List[Tuple] = [(0,0,1), (0,1,0)], # negative, positive
                                  color_bound: Tuple = (0,0,0),
                                  show_colortable: bool=False
                                  ):
        assert feature_type in ["original", "normed",
                                "scaled"], 'accepted feature types are "original", "normed", "scaled"'
        if feature_type == "original":
            feat_name = ""
        elif feature_type == "normed":
            feat_name = f"_{normq}normed"
        else:
            feat_name = f"_{normq}normed_scaled"

        # self.marker_positive(feature_type=feature_type, accumul_type=accumul_type, normq=normq)
        df_marker_positive_original = getattr(self, f"df_marker_positive{feat_name}_{accumul_type}")
        df_marker_positive = df_marker_positive_original.copy()

        # exclude the channels accordingly
        if 'membrane' in self.channels:
            channels_wo_special = self.channels[:-2] # excludes nuclei and membrane channel
        else:
            channels_wo_special = self.channels[:-1] # excludes nuclei channel only

        # the original four location info + marker/channel names
        reconstructed_marker_channel = ['filename', 'id', 'coordinate_x', 'coordinate_y'] + channels_wo_special
        
        assert len(reconstructed_marker_channel) == len(df_marker_positive_original.columns)
        df_marker_positive.columns = reconstructed_marker_channel

        color_dict = dict((key, v) for (key, v) in zip(['negative', 'positive'], color_list))
        if show_colortable:
            show_color_table(color_dict=color_dict, title="color dictionary", emptycols=3)
        color_ids = []

        stain_nuclei = np.zeros((self.nuclei_seg.shape[0], self.nuclei_seg.shape[1], 3)) + 1
        for i in range(2, np.max(self.nuclei_seg) + 1):
            color_id = df_marker_positive[marker][df_marker_positive['id'] == i].values[0]
            if color_id not in color_ids:
                color_ids.append(color_id)
            stain_nuclei[self.nuclei_seg == i] = color_list[color_id][:3]
        # add boundary
        if show_boundary:
            stain_nuclei = mark_boundaries(stain_nuclei,
                                       self.nuclei_seg, mode="inner", color=color_bound)

        # stained Cell image
        stain_cell = np.zeros((self.cell_seg.shape[0], self.cell_seg.shape[1], 3)) + 1
        for i in range(2, np.max(self.cell_seg) + 1):
            color_id = df_marker_positive[marker][df_marker_positive['id'] == i].values[0]
            stain_cell[self.cell_seg == i] = color_list[color_id][:3]
        if show_boundary:
            stain_cell = mark_boundaries(stain_cell,
                                     self.cell_seg, mode="inner", color=color_bound)
        return stain_nuclei, stain_cell, color_dict

    def visualize_pheno(self, key_pheno: str,
                        color_dict: Optional[dict] = None,
                        show: bool = False,
                        show_colortable: bool = False):
        assert key_pheno in self.phenograph, "Pheno-Graph with {} not available!".format(key_pheno)
        phenograph = self.phenograph[key_pheno]
        communities = phenograph['communities']  # phenograph clustering community IDs
        seg_id = self.df_feature['id']  # nuclei / cell segmentation IDs

        if color_dict is None:
            color_dict = dict((_, plt.cm.get_cmap('tab20').colors[_ % 20]) \
                              for _ in np.unique(communities))
        #     rgba_colors   = np.array([color_dict[_] for _ in communities])

        if show_colortable:
            show_color_table(color_dict=color_dict,
                             title="phenograph clusters",
                             emptycols=3, dpi=60)

        # Create image with nuclei / cells stained by PhenoGraph clustering output
        # stain rule: same color for same cluster, stain nuclei
        stain_nuclei = np.zeros((self.nuclei_seg.shape[0], self.nuclei_seg.shape[1], 3)) + 1
        stain_cell = np.zeros((self.cell_seg.shape[0], self.cell_seg.shape[1], 3)) + 1

        for i in range(2, np.max(self.nuclei_seg) + 1):
            commu_id = communities[seg_id == i][0]
            stain_nuclei[self.nuclei_seg == i] = color_dict[commu_id]  # rgba_colors[communities[seg_id == i]][:3] #
            stain_cell[self.cell_seg == i] = color_dict[commu_id]  # rgba_colors[communities[seg_id == i]][:3] #
        if show:
            fig, axs = plt.subplots(1, 2, figsize=(16, 8))
            axs[0].imshow(stain_nuclei)
            axs[1].imshow(stain_cell)

        return stain_nuclei, stain_cell, color_dict

    def get_binary_pos_express_df(self, feature_name, accumul_type):
        """
        returns a dataframe in the form marker1, marker2, ... vs. cell1, cell2; indicating whether each cell is positively expressed in each marker
        """
        df_feature_name = f"df_feature_{feature_name}"

        # get the feature extraction result
        df_feature = getattr(self , df_feature_name)

        # select only markers with desired accumulation type
        marker_col_all = [x for x in df_feature.columns if f"cell_{accumul_type}" in x]

        # subset feature
        df_feature_of_interst = df_feature[marker_col_all]

        # reports each marker's threshold to be considered positively expressed, number of positive cells, etc
        df_cell_count_info = getattr(self, f"cell_count_{feature_name}_{accumul_type}")
        thresholds = df_cell_count_info.threshold

        # returns a binary dataframe of whether each cell at each marker passes the positive threshold
        df_binary_pos_exp = df_feature_of_interst.apply(lambda column: apply_threshold_to_column(column, threshold=thresholds[df_feature_of_interst.columns.get_loc(column.name)]))

        return df_binary_pos_exp
    
    def roi_co_expression(self, feature_name, accumul_type, return_components=False):
        """
        Performs the co-expression analysis at the single ROI level.
        Can return components for cohort analysis if needed
        """
        from itertools import product

        # returns a binary dataframe of whether each cell at each marker passes the positive threshold
        df_binary_pos_exp = self.get_binary_pos_express_df(feature_name, accumul_type)

        n_cells, n_markers = df_binary_pos_exp.shape
        df_pos_exp_val = df_binary_pos_exp.values

        # list all pair-wise combinations of the markers
        column_combinations = list(product(range(n_markers), repeat=2))

        # step to the numerator of the log odds ratio
        co_positive_count_matrix = np.zeros((n_markers, n_markers))

        # step to the denominator of the log odds ratio
        expected_count_matrix = np.zeros((n_markers, n_markers))

        for combo in column_combinations:
            marker1, marker2 = combo

            # count cells that positively expresses in both marker 1 and 2
            positive_prob_marker1_and_2 = np.sum(np.logical_and(df_pos_exp_val[:, marker1], df_pos_exp_val[:, marker2]))
            co_positive_count_matrix[marker1, marker2] = positive_prob_marker1_and_2
            
            # pair (A,B) counts is the same as pair (B,A) counts
            co_positive_count_matrix[marker2, marker1] = positive_prob_marker1_and_2

            # count expected cells if marker 1 and 2 are independently expressed
            # p(A and B) = p(A) * p(B) = num_pos_a * num_pos_b / (num_cells * num_cells)
            # p(A) = number of positive cells / number of cells
            exp_prob_in_marker1_and_2 = np.sum(df_pos_exp_val[:, marker1]) * np.sum(df_pos_exp_val[:, marker2])
            expected_count_matrix[marker1, marker2] = exp_prob_in_marker1_and_2
            expected_count_matrix[marker2, marker1] = exp_prob_in_marker1_and_2

        # theta(i_pos and j_pos)
        df_co_pos = pd.DataFrame(co_positive_count_matrix, index=df_binary_pos_exp.columns, columns=df_binary_pos_exp.columns)

        # E(x)
        df_expected = pd.DataFrame(expected_count_matrix, index=df_binary_pos_exp.columns, columns=df_binary_pos_exp.columns)

        if return_components:
            # hold off on calculating probabilites. Need the components from other ROIs to calculate the co-expression
            return df_co_pos, df_expected, n_cells
        
        # otherwise, return the probabilies
        df_co_pos_prob = df_co_pos / n_cells
        df_expected_prob = df_expected / n_cells**2
        return df_co_pos_prob, df_expected_prob

    def roi_interaction_graphs(self, feature_name, accumul_type, method: str = "distance", threshold=50, return_components=False):
        """ Performs spatial interaction at the ROI level. 
        Finds if two positive markers are in proximity with each other. Proximity can be defined either with k-nearest neighbor or distance thresholding.
        Args:
            key_pheno: dictionary key for a specific phenograph output
            method: method to construct the adjacency matrix, choose from "distance" and "kneighbor"
            threshold: either the number of neighbors or euclidean distance to qualify as neighborhood pairs. Default is 50 for distance and 20 for k-neighbor.
            **kwargs: used to specify distance threshold (thres) for "distance" method or number of neighbors (k)
            for "kneighbor" method
        Output:
            network: (dict) ROI level network that will be used for cluster interaction analysis
        """
        assert method in ["distance", "k-neighbor"], "Method can be either 'distance' or 'k-neighbor'!"
        print(f'Calculating spatial interaction with method "{method}" and threshold at {threshold}')

        df_feature_name = f"df_feature_{feature_name}"

        # get the feature extraction result
        df_feature = getattr(self , df_feature_name)

        # select only markers with desired accumulation type
        marker_col_all = [x for x in df_feature.columns if f"cell_{accumul_type}" in x]

        # subset feature
        df_feature_of_interst = df_feature[marker_col_all]

        n_cells, n_markers = df_feature_of_interst.shape

        networks = {}
        if method == "distance":
            dist = DistanceMetric.get_metric('euclidean')
            neighbor_matrix = dist.pairwise(df_feature.loc[:, ['coordinate_x', 'coordinate_y']].values)
            
            # returns nonzero elements of the matrix
            # ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html
            I, J, V = sp.find(neighbor_matrix)
            # finds index of values less than the distance threshold
            v_keep_index = V < threshold

        elif method == "k-neighbor":
            neighbor_matrix = skgraph(np.array(df_feature.loc[:, ['coordinate_x', 'coordinate_y']]), n_neighbors=threshold, mode='distance')
            # returns nonzero elements of the matrix
            # ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html
            I, J, V = sp.find(neighbor_matrix)
            v_keep_index = V > 0 # any non-zero distance neighbor qualifies

        # finds index of values less than the distance threshold
        i_keep, j_keep = I[v_keep_index], J[v_keep_index]
        assert len(i_keep) == len(j_keep) # these are paired indexes for the cell. must equal in length.

        n_neighbor_pairs = len(i_keep)

        # (i,j) now tells you the index of the two cells that are in close proximity (within {thres} distance of each other)
        # now we need a list that tells you the positive expressed marker index in each cell
        
        # returns a binary dataframe of whether each cell at each marker passes the positive threshold
        df_binary_pos_exp = self.get_binary_pos_express_df(feature_name, accumul_type)
        df_pos_exp_val = df_binary_pos_exp.values # convert to matrix operation

        # cell-marker positive list, 1-D. len = n_cells. Each element indicates the positively expressed marker of that cell index
        # only wants where the x condition is True. x refers to the docs x, not the actual array direction
        # ref: https://numpy.org/doc/stable/reference/generated/numpy.where.html
        cell_marker_pos_list = [np.where(cell)[0] for cell in df_pos_exp_val]

        cell_interaction_in_markers_counts = np.zeros((n_markers, n_markers))
        
        # used to calculate E(x)
        expected_marker_count_1d = np.zeros(n_markers)

        # go through each close proxmity cell pair
        for i, j in zip(i_keep, j_keep):
            # locate the cell via index, then 
            marker_index_neighbor_pair1 = cell_marker_pos_list[i]
            marker_index_neighbor_pair2 = cell_marker_pos_list[j]

            # within each neighbor pair (i.e. pairs of cells) contains the positively expressed markers index in that cell
            # the product of these markers index from each cell indicates interaction pair
            marker_matrix_update_coords = list(product(marker_index_neighbor_pair1, marker_index_neighbor_pair2))
            
            # update the counts between each marker interaction pair
            # example coords: (pos_marker_index_in_cell1, pos_marker_index_in_cell2)
            for coords in marker_matrix_update_coords:
                cell_interaction_in_markers_counts[coords] += 1

            # find the marker index that appeared in both pairs of the neighbor cells
            markers_index_both_neighbor_pair = np.union1d(marker_index_neighbor_pair1, marker_index_neighbor_pair2)
            expected_marker_count_1d[markers_index_both_neighbor_pair] += 1 # increase the markers that appears in either neighborhood pair


        # expected counts
        # expected_marker_count_1d = np.sum(df_pos_exp_val, axis=0)
        # ref: https://numpy.org/doc/stable/reference/generated/numpy.outer.html
        expected_counts = np.outer(expected_marker_count_1d, expected_marker_count_1d)

        # expected and observed needs to match dimension to perform element-wise operation
        assert expected_counts.shape == cell_interaction_in_markers_counts.shape

        df_expected_counts = pd.DataFrame(expected_counts, index=df_feature_of_interst.columns, columns=df_feature_of_interst.columns)
        df_cell_interaction_counts = pd.DataFrame(cell_interaction_in_markers_counts, index=df_feature_of_interst.columns, columns=df_feature_of_interst.columns)
        if return_components:
            return df_expected_counts, df_cell_interaction_counts, n_neighbor_pairs
        
        # calculates percentage within function if not return compoenents
        # df_expected_prob = df_expected_counts / n_cells**2
        df_expected_prob = df_expected_counts / n_neighbor_pairs**2

        # theta(i_pos and j_pos)
        df_cell_interaction_prob = df_cell_interaction_counts / n_neighbor_pairs
        
        return df_expected_prob, df_cell_interaction_prob
    

class CytofImageTiff(CytofImage):
    """ 
    CytofImage for Tiff images, inherit from Cytofimage
    """

    def __init__(self, image, slide="", roi="", filename=""):
        self.image = image

        self.markers = None  # markers
        self.labels = None  # labels
        self.slide = slide
        self.roi = roi
        self.filename = filename

        self.channels = None  # ["{}({})".format(marker, label) for (marker, label) in zip(self.markers, self.labels)]

    def copy(self):
        '''
        Creates a deep copy of the current CytofImageTIFF object and return it
        '''
        new_instance = type(self)(self.image.copy(), self.slide, self.roi, self.filename)
        new_instance.markers = copy.deepcopy(self.markers)
        new_instance.labels = copy.deepcopy(self.labels)
        new_instance.channels = copy.deepcopy(self.channels)
        return new_instance
    
    def quality_control(self,  thres: int = 50) -> None:
        setattr(self, "keep", False)
        if any([x < thres for x in self.image.shape]):
            print(f"At least one dimension of the image {self.slide}-{self.roi} is smaller than {thres}, \
                hence exclude from analyzing" )
            self.keep = False

    def set_channels(self, markers: List, labels: List):
        self.markers = markers
        self.labels = labels
        self.channels = ["{}({})".format(marker, label) for (marker, label) in zip(self.markers, self.labels)]
        
    def set_markers(self, 
                markers: list, 
                labels: list, 
                channels: Optional[list] = None
               ):
        """This deprecates set_channels """
        self.raw_markers = markers
        self.raw_labels  = labels
        if channels is not None:
            self.raw_channels = channels
        else:
            self.raw_channels = [f"{marker}-{label}" for (marker, label) in zip(markers, labels)]
        self.channels = self.raw_channels.copy()
        self.markers  = self.raw_markers.copy()
        self.labels   = self.raw_labels.copy()


    def check_channels(self, 
                       channels: Optional[List] = None, 
                       xlim: Optional[List] = None, 
                       ylim: Optional[List] = None, 
                       ncols: int = 5, vis_q: int = 0.9, 
                       colorbar: bool = False, 
                       savedir: Optional[str] = None, 
                       savename: str = "check_channels"):
        """
        xlim = a list of 2 numbers indicating the ylimits to show image (default=None)
        ylim = a list of 2 numbers indicating the ylimits to show image (default=None)
        ncols = number of subplots per row (default=5)
        vis_q = percentile q used to normalize image before visualization  (default=0.9)
        """
        show = True if savedir is None else False
        if channels is not None:
            if not all([cl in self.channels for cl in channels]):
                print("At least one of the channels not available, visualizing all channels instead!")
                channels = None
        if channels is None:  # if no desired channels specified, check all channels
            channels = self.channels
        if len(channels) <= ncols:
            ax_nrow = 1
            ax_ncol = len(channels)
        else:
            ax_ncol = ncols
            ax_nrow = int(np.ceil(len(channels) / ncols))
        fig, axes = plt.subplots(ax_nrow, ax_ncol, figsize=(3 * ax_ncol, 3 * ax_nrow))
        # fig, axes = plt.subplots(ax_nrow, ax_ncol)
        if ax_nrow == 1:
            axes = np.array([axes])
            if ax_ncol == 1:
                axes = np.expand_dims(axes, axis=1)
        for i, _ in enumerate(channels):
            _ax_nrow = int(np.floor(i / ax_ncol))
            _ax_ncol = i % ax_ncol
            _i = self.channels.index(_)
            image = self.image[..., _i]
            percentile_q = np.quantile(image, vis_q) if np.quantile(image, vis_q) != 0 else 1
            image = np.clip(image / percentile_q, 0, 1)
            axes[_ax_nrow, _ax_ncol].set_title(_)
            if xlim is not None:
                image = image[:, xlim[0]:xlim[1]]
            if ylim is not None:
                image = image[ylim[0]:ylim[1], :]
            im = axes[_ax_nrow, _ax_ncol].imshow(image, cmap="gray")
            if colorbar:
                fig.colorbar(im, ax=axes[_ax_nrow, _ax_ncol])
        plt.tight_layout(pad=1.2)
        # axes.axis('scaled')
        if show:
            plt.show()
        else:
            # plt.savefig(os.path.join(savedir, f"{savename}.png"))
            return fig

    def remove_special_channels(self, channels: List):
        for channel in channels:
            if channel not in self.channels:
                print("Channel {} not available, escaping...".format(channel))
                continue
            idx = self.channels.index(channel)
            self.channels.pop(idx)
            self.markers.pop(idx)
            self.labels.pop(idx)
            self.image = np.delete(self.image, idx, axis=2)

            if hasattr(self, "df"):
                self.df.drop(columns=channel, inplace=True)

    def define_special_channels(
        self, 
        channels_dict: Dict, 
        q: float = 0.95, 
        overwrite: bool = False, 
        verbose: bool = False,
        rm_key: str = 'nuclei'):
        channels_rm = []

        # new_name is the key from channels_dict, old_names contains a list of existing channel names
        for new_name, old_names in channels_dict.items():
            if len(old_names) == 0:
                continue
            if new_name in self.channels and (not overwrite):
                print("Warning: {} is already present, skipping...".format(new_name))
                continue
            if new_name in self.channels and overwrite:
                print("Warning: {} is already present, overwriting...".format(new_name))
                idx = self.channels.index(new_name)
                self.image = np.delete(self.image, idx, axis=2)
                self.channels.pop(idx)


            old_nms = []
            for i, old_name in enumerate(old_names):
                if old_name not in self.channels:
                    # warnings.warn('{} is not available!'.format(old_name['marker_name']))
                    warnings.warn('{} is not available!'.format(old_name))

                    continue
                old_nms.append(old_name)
            if verbose:
                print("Defining channel '{}' by summing up channels: {}.".format(new_name, ', '.join(old_nms)))

            if len(old_nms) > 0:

                # only add channels to removal list if matching remove key
                if new_name == rm_key:
                    channels_rm += old_nms
                for i, old_name in enumerate(old_nms):
                    _i = self.channels.index(old_name)
                    _image = self.image[..., _i]
                    percentile_q = np.quantile(_image, q) if np.quantile(_image, q) != 0 else 1
                    _image = np.clip(_image / percentile_q, 0, 1)  # quantile normalization
                    if i == 0:
                        image = _image
                    else:
                        image += _image
                if verbose:
                    print(f"Original image shape: {self.image.shape}")
                self.image = np.dstack([self.image, image[:, :, None]])
                if verbose:
                    print(f"Image shape after defining special channel(s) {self.image.shape}")
                
                if new_name not in self.channels:
                    self.channels.append(new_name)

        if hasattr(self, "defined_channels"):
            for key in channels_dict.keys():
                self.defined_channels.add(key)
        else:
            setattr(self, "defined_channels", set(list(channels_dict.keys())))           
        return channels_rm

# Define a function to apply the threshold and convert to binary
def apply_threshold_to_column(column, threshold):
    """
    Apply a threshold to a column of data and convert it to binary.

    @param column: The input column of data to be thresholded.
    @param threshold: The threshold value to compare the elements in the column.
    
    @return: A binary array where True represents values meeting or exceeding the threshold,
             and False represents values below the threshold.
    """
    return (column >= threshold)
    
class CytofCohort():
    def __init__(self, cytof_images: Optional[dict] = None, 
                 df_cohort: Optional[pd.DataFrame] = None, 
                 dir_out: str = "./", 
                 cohort_name: str = "cohort1"):
        """
        cytof_images: 
        df_cohort: Slide | ROI | input file
        """
        self.cytof_images = cytof_images or {}
        self.df_cohort    = df_cohort# or None# pd.read_csv(file_cohort) # the slide-ROI
        self.feat_sets = {
            "all": ["cell_sum", "cell_ave", "cell_morphology"],
            "cell_sum": ["cell_sum", "cell_morphology"],
            "cell_ave": ["cell_ave", "cell_morphology"],
            "cell_sum_only": ["cell_sum"],
            "cell_ave_only": ["cell_ave"]
        }
        
        self.name    = cohort_name
        self.dir_out = os.path.join(dir_out, self.name)
        if not os.path.exists(self.dir_out):
            os.makedirs(self.dir_out)
    def __getitem__(self, key):
        'Extracts a particular cytof image from the cohort'
        return self.cytof_images[key]
        
    def __str__(self):
        return f"CytofCohort {self.name}"

    def __repr__(self):
        return f"CytofCohort(name={self.name})"
    
    def save_cytof_cohort(self, savename):
        directory = os.path.dirname(savename)
        if not os.path.exists(directory):
            os.makedirs(directory)
        pkl.dump(self, open(savename, "wb"))
    
    def batch_process_feature(self):
        """
        Batch process: if the CytofCohort is initialized by a dictionary of CytofImages
        """
        
        slides, rois, fs_input = [], [], []
        for n, cytof_img in self.cytof_images.items():
            if not hasattr(self, "dict_feat"):
                setattr(self, "dict_feat", cytof_img.features)
            if not hasattr(self, "markers"):
                setattr(self, "markers", cytof_img.markers)

            print('dict quantiles in batch process:', cytof_img.dict_quantiles)
            try:
                qs &= set(list(cytof_img.dict_quantiles.keys()))
            except:
                qs = set(list(cytof_img.dict_quantiles.keys()))

            slides.append(cytof_img.slide)
            rois.append(cytof_img.roi)
            fs_input.append(cytof_img.filename) #df_feature['filename'].unique()[0])
        
        setattr(self, "normqs", qs)
        # scale feature (in a batch)
        df_scale_params = self.scale_feature()
        setattr(self, "df_scale_params", df_scale_params)
        if self.df_cohort is None:
            self.df_cohort = pd.DataFrame({"Slide": slides, "ROI": rois, "input file": fs_input})        


    def batch_process(self, params: Dict):
        sys.path.append("../CLIscripts")
        from process_single_roi import process_single, SetParameters
        for i, (slide, roi, fname) in self.df_cohort.iterrows():
            paramsi = SetParameters(filename=fname,
                        outdir=self.dir_out,
                        label_marker_file=params.get('label_marker_file', None),
                        slide=slide,
                        roi=roi,
                        quality_control_thres=params.get("quality_control_thres", 50),
                        channels_remove=params.get("channels_remove", None),
                        channels_dict=params.get("channels_dict", None),
                        use_membrane=params.get("use_membrane",True),
                        cell_radius=params.get("cell_radius", 5),
                        normalize_qs=params.get("normalize_qs", 75),
                        iltype=params.get('iltype', None))

            cytof_img = process_single(paramsi, downstream_analysis=False, verbose=False)
            self.cytof_images[f"{slide}_{roi}"] = cytof_img
            
        self.batch_process_feature()

    def get_feature(self, 
                    normq: int = 75, 
                    feat_type: str = "normed_scaled", 
                    verbose: bool = False):
        """ 
        Get a specific set of feature for the cohort
        The set is defined by `normq` and `feat_type`
        """
        
        assert feat_type in ["normed_scaled", "normed", ""], f"feature type {feat_type} not supported!"
        
        if feat_type != "" and not hasattr(self, "df_feature"):
            orig_dfs = {}
            for f_roi, cytof_img in self.cytof_images.items():
                orig_dfs[f_roi] = getattr(cytof_img, "df_feature")
            setattr(self, "df_feature", pd.concat([_ for key, _ in orig_dfs.items()]).reset_index(drop=True))

        feat_name = feat_type if feat_type=="" else f"_{normq}{feat_type}"
        n_attr    = f"df_feature{feat_name}"
              
        dfs = {}
        for f_roi, cytof_img in self.cytof_images.items():
            dfs[f_roi] = getattr(cytof_img, n_attr)
        setattr(self, n_attr, pd.concat([_ for key, _ in dfs.items()]).reset_index(drop=True))
        if verbose:
            print("The attribute name of the feature: {}".format(n_attr))
        
    def scale_feature(self):
        """Scale features for all normalization q values"""
        cytof_img = list(self.cytof_images.values())[0]
        # features to be scaled
        s_features = [col for key, features in cytof_img.features.items() \
                              for f in features \
                              for col in cytof_img.df_feature.columns if col.startswith(f)]

        for normq in self.normqs:
            n_attr = f"df_feature_{normq}normed"
            n_attr_scaled = f"df_feature_{normq}normed_scaled"

            if not hasattr(self, n_attr):
                self.get_feature(normq=normq, feat_type="normed")

            df_feature = getattr(self, n_attr)

            # calculate scaling parameters
            df_scale_params = df_feature[s_features].mean().to_frame(name="mean").transpose()
            df_scale_params = pd.concat([df_scale_params, df_feature[s_features].std().to_frame(name="std").transpose()])

            # 
            m = df_scale_params[df_scale_params.columns].iloc[0] # mean
            s = df_scale_params[df_scale_params.columns].iloc[1] # std.dev

            df_feature_scale = copy.deepcopy(df_feature)

            assert len([x for x in df_scale_params.columns if x not in df_scale_params.columns]) == 0

            # scale
            df_feature_scale[df_scale_params.columns] = (df_feature_scale[df_scale_params.columns] - m) / s
            setattr(self, n_attr_scaled, df_feature_scale)
        return df_scale_params
    
    def _get_feature_subset(self, 
                           normq: int = 75, 
                           feat_type: str = "normed_scaled", 
                           feat_set: str = "all", 
                           markers: str = "all", 
                           verbose: bool = False):

        assert feat_type in ["normed_scaled", "normed", ""], f"feature type {feat_type} not supported!"
        assert (markers == "all" or isinstance(markers, list))
        assert feat_set in self.feat_sets.keys(), f"feature set {feat_set} not supported!"
        
        description = "original" if feat_type=="" else f"{normq}{feat_type}"
        n_attr      = f"df_feature{feat_type}" if feat_type=="" else f"df_feature_{normq}{feat_type}" # the attribute name to achieve from cytof_img
        
        if not hasattr(self, n_attr):
            self.get_feature(normq, feat_type)
        if verbose:
            print("\nThe attribute name of the feature: {}".format(n_attr))

        feat_names = [] # a list of feature names
        for y in self.feat_sets[feat_set]:
            if "morphology" in y:
                feat_names += self.dict_feat[y]
            else:
                if markers == "all": # features extracted from all markers are kept
                    feat_names += self.dict_feat[y]
                    markers = self.markers
                else: # only features correspond to markers kept (markers are a subset of self.markers)
                    ids = [self.markers.index(x) for x in markers] # TODO: the case where marker in markers not in self.markers???
                    feat_names += [self.dict_feat[y][x] for x in ids]
        
        df_feature = getattr(self, n_attr)[feat_names]
        return df_feature, markers, feat_names, description, n_attr
    
    ###############################################################
    ################## PhenoGraph Clustering ######################
    ###############################################################
    def clustering_phenograph(self, 
                              normq:int = 75, 
                              feat_type:str = "normed_scaled", 
                              feat_set: str = "all", 
                              pheno_markers: Union[str, List] = "all", 
                              k: int = None, 
                              save_vis: bool = False,
                              verbose:bool = True):
        
        if pheno_markers == "all":
            pheno_markers_ = "_all"
        else:
            pheno_markers_ = "_subset1"

        assert feat_type in ["normed_scaled", "normed", ""], f"feature type {feat_type} not supported!"
        df_feature, pheno_markers, feat_names, description, n_attr = self._get_feature_subset(normq=normq,
                                                                                          feat_type=feat_type,
                                                                                          feat_set=feat_set,
                                                                                          markers=pheno_markers,
                                                                                          verbose=verbose)
        # set number of nearest neighbors k and run PhenoGraph for phenotype clustering
        k = k if k else int(df_feature.shape[0] / 100) 
        if k < 10:
            k = min(df_feature.shape[0]-1, 10)

            # perform k-means algorithm for small k
            kmeans = KMeans(n_clusters=k, random_state=42).fit(df_feature)
            communities = kmeans.labels_
        else: 
            communities, graph, Q = phenograph.cluster(df_feature, k=k, n_jobs=-1)   # run PhenoGraph

        # project to 2D using UMAP
        umap_2d = umap.UMAP(n_components=2, init='random', random_state=0)
        proj_2d = umap_2d.fit_transform(df_feature)
        
        if not hasattr(self, "phenograph"):
            setattr(self, "phenograph", {})
        key_pheno  = f"{description}_{feat_set}_feature_{k}"
        key_pheno += f"{pheno_markers_}_markers" 
            
            
        N = len(np.unique(communities))
        self.phenograph[key_pheno] = {
            "data": df_feature,
            "markers": pheno_markers,
            "features": feat_names,
            "description": {"normalization": description, "feature_set": feat_set}, # normalization and/or scaling | set of feature (in self.feat_sets)
            "communities": communities, 
            "proj_2d": proj_2d, 
            "N": N,
            "feat_attr": n_attr
        }
        
        if verbose:
            print(f"\n{N} communities found. The dictionary key for phenograph: {key_pheno}.")
        return key_pheno

    def _gather_roi_pheno(self, key_pheno):
        """Split whole df into df for each ROI"""
        df_slide_roi    = self.df_cohort
        pheno_out       = self.phenograph[key_pheno]
        df_feat_all     = getattr(self, pheno_out['feat_attr']) # original feature (to use the slide/ roi /filename info) data
        df_pheno_all    = pheno_out['data'] # phenograph data
        proj_2d_all     = pheno_out['proj_2d']
        communities_all = pheno_out['communities']  

        df_feature_roi, proj_2d_roi, communities_roi = {}, {}, {}        
        for i in self.df_cohort.index:       # Slide | ROI | input file
#             path_i = df_slide_roi.loc[i, "path"]
            roi_i  = df_slide_roi.loc[i, "ROI"]
            f_in   = df_slide_roi.loc[i, "input file"]# os.path.join(path_i, roi_i)
            cond   = df_feat_all["filename"] == f_in
            df_feature_roi[roi_i] = df_pheno_all.loc[cond, :] 
            proj_2d_roi[roi_i] = proj_2d_all[cond, :] 
            communities_roi[roi_i] = communities_all[cond] 
        return df_feature_roi, proj_2d_roi, communities_roi

    def vis_phenograph(self,
                       key_pheno: str,
                       level: str = "cohort",
                       accumul_type: Union[List[str], str] = "cell_sum",  # ["cell_sum", "cell_ave"]
                       normalize: bool = False,
                       save_vis: bool = False,
                       show_plots: bool = False,
                       plot_together: bool = True,
                       fig_width: int = 5 # only when plot_together is True
                       ):
        assert level.upper() in ["COHORT", "SLIDE", "ROI"], "Only 'cohort', 'slide' and 'roi' are accetable values for level"
        this_pheno = self.phenograph[key_pheno]
        feat_names = this_pheno['features']
        descrip = this_pheno['description']
        n_community = this_pheno['N']
        markers = this_pheno['markers']
        feat_set = self.feat_sets[descrip['feature_set']]

        if save_vis:
            vis_savedir = os.path.join(self.dir_out, "phenograph", key_pheno + f"-{n_community}clusters")
            if not os.path.exists(vis_savedir):
                os.makedirs(vis_savedir)
        else:
            vis_savedir = None

        if accumul_type is None:  # by default, visualize all accumulation types
            accumul_type = [_ for _ in feat_set if "morphology" not in _]
        if isinstance(accumul_type, str):
            accumul_type = [accumul_type]

        proj_2d = this_pheno['proj_2d']
        df_feature = this_pheno['data']
        communities = this_pheno['communities']

        if level.upper() == "COHORT":
            proj_2ds = {"cohort": proj_2d}
            df_feats = {"cohort": df_feature}
            commus = {"cohort": communities}
        else:
            df_feats, proj_2ds, commus = self._gather_roi_pheno(key_pheno)
            if level.upper() == "SLIDE":
                for slide in self.df_cohort["Slide"].unique():  # for each slide

                    f_rois = [roi_i.replace(".txt", "") for roi_i in
                              self.df_cohort.loc[self.df_cohort["Slide"] == slide, "ROI"]]
                    df_feats[slide] = pd.concat([df_feats[f_roi] for f_roi in f_rois])
                    proj_2ds[slide] = np.concatenate([proj_2ds[f_roi] for f_roi in f_rois])
                    commus[slide] = np.concatenate([commus[f_roi] for f_roi in f_rois])
                    for f_roi in f_rois:
                        df_feats.pop(f_roi)
                        proj_2ds.pop(f_roi)
                        commus.pop(f_roi)
        
        figs = {} # if plot_together

        figs_scatter = {} # if not plot_together
        figs_exps    = {}

        cluster_protein_exps = {}
        for key, df_feature in df_feats.items():
            if plot_together:
                ncol = len(accumul_type)+1
                fig, axs = plt.subplots(1,ncol, figsize=(ncol*fig_width, fig_width))
            proj_2d = proj_2ds[key]
            commu = commus[key]
            # Visualize 1: plot 2d projection together
            print("Visualization in 2d - {}-{}".format(level, key))
            savename = os.path.join(vis_savedir, f"cluster_scatter_{level}_{key}.png") if (save_vis and not plot_together) else None
            ax = axs[0] if plot_together else None
            fig_scatter = visualize_scatter(data=proj_2d, communities=commu, n_community=n_community, 
                                            title=key, savename=savename, show=show_plots, ax=ax)
            figs_scatter[key] = fig_scatter
            
            figs_exps[key]    = {}
            # Visualize 2: protein expression
            for axid, acm_tpe in enumerate(accumul_type):
                ids = [i for (i, x) in enumerate(feat_names) if re.search(".{}".format(acm_tpe), x)]
                feat_names_ = [feat_names[i] for i in ids]

                cluster_protein_exp = np.zeros((n_community, len(markers)))

                group_ids = np.arange(len(np.unique(communities)))
                for cluster in range(len(np.unique(communities))):  # for each (global) community
                    df_sub = df_feature.loc[commu == cluster]
                    if df_sub.shape[0] == 0:
                        group_ids = np.delete(group_ids, group_ids == cluster)
                        continue
                    
                    # number of markers should match # of features extracted.
                    for i, feat in enumerate(feat_names_):
                        cluster_protein_exp[cluster, i] = np.average(df_sub[feat])

                # get rid of non-exist clusters
                '''cluster_protein_exp = cluster_protein_exp[group_ids, :]'''
                if normalize:
                    cluster_protein_exp_norm = cluster_protein_exp - np.median(cluster_protein_exp, axis=0)
                    # or set non-exist cluster to be inf
                    rid = set(np.arange(len(np.unique(communities)))) - set(group_ids)
                    if len(rid) > 0:
                        rid = np.array(list(rid))
                        cluster_protein_exp_norm[rid, :] = np.nan
                        group_ids = np.arange(len(np.unique(communities)))
                savename = os.path.join(vis_savedir, f"protein_expression_{level}_{acm_tpe}_{key}.png") \
                    if (save_vis and not plot_together) else None
                vis_exp = cluster_protein_exp_norm if normalize else cluster_protein_exp
                ax = axs[axid+1] if plot_together else None
                fig_exps = visualize_expression(data=vis_exp, markers=markers,
                                                group_ids=group_ids, title="{} - {}-{}".format(level, acm_tpe, key), 
                                                savename=savename, show=show_plots, ax=ax)
                figs_exps[key][acm_tpe]   = fig_exps
                cluster_protein_exps[key] = vis_exp
            plt.tight_layout()
            if plot_together:
                figs[key] = fig
                if save_vis:
                    plt.savefig(os.path.join(vis_savedir, f"phenograph_{level}_{acm_tpe}_{key}.png"), dpi=300)
                if show_plots:
                    plt.show()
            if not show_plots:
                plt.close("all")
        return df_feats, commus, cluster_protein_exps, figs, figs_scatter, figs_exps


    def attach_individual_roi_pheno(self, key_pheno, override=False):
        """ Attach PhenoGraph outputs to each individual CytofImage (roi) and update each saved CytofImage
        """
        assert key_pheno in self.phenograph.keys(), "Pheno-Graph with {} not available!".format(key_pheno)
        phenograph = self.phenograph[key_pheno]  # data, markers, features, description, communities, proj_2d, N
        
        for n, cytof_img in self.cytof_images.items():
            if not hasattr(cytof_img, "phenograph"):
                setattr(cytof_img, "phenograph", {})
            if key_pheno in cytof_img.phenograph and not override:
                print("\n{} already attached for {}-{}, skipping ... ".format(key_pheno, cytof_img.slide, cytof_img.roi))
                continue

            cond = self.df_feature['filename'] == cytof_img.filename  # cytof_img.filename: original file name
            data = phenograph['data'].loc[cond, :]

            communities = phenograph['communities'][cond.values]
            proj_2d = phenograph['proj_2d'][cond.values]

            # phenograph for this image
            this_phenograph = {"data": data,
                               "markers": phenograph["markers"],
                               "features": phenograph["features"],
                               "description": phenograph["description"],
                               "communities": communities,
                               "proj_2d": proj_2d,
                               "N": phenograph["N"]
                               }

            cytof_img.phenograph[key_pheno] = this_phenograph



    def _gather_roi_kneighbor_graphs(self, key_pheno: str, method: str = "distance", **kwars: dict) -> dict:
        """ Define adjacency community for each cell based on either k-nearest neighbor or distance
        Args:
            key_pheno: dictionary key for a specific phenograph output
            method: method to construct the adjacency matrix, choose from "distance" and "kneighbor"
            **kwargs: used to specify distance threshold (thres) for "distance" method or number of neighbors (k)
            for "kneighbor" method
        Output:
            network: (dict) ROI level network that will be used for cluster interaction analysis
        """
        assert method in ["distance", "kneighbor"], "Method can be either 'distance' or 'kneighbor'!"
        default_thres = {
            "thres": 50,
            "k": 8
        }
        _ = "k" if method == "kneighbor" else "thres"
        thres = kwars.get(_, default_thres[_])
        print("{}: {}".format(_, thres))
        df_pheno_feat = getattr(self, self.phenograph[key_pheno]['feat_attr'])
        n_cluster = self.phenograph[key_pheno]['N']
        cluster = self.phenograph[key_pheno]['communities']
        df_slide_roi = getattr(self, "df_cohort")

        networks = {}
        if method == "kneighbor":  # construct K-neighbor graph
            for i, row in df_slide_roi.iterrows(): #for i in df_slide_roi.index:       # Slide | ROI | input file
                slide, roi, f_in = row["Slide"], row["ROI"], row["input file"]
                cond = df_pheno_feat['filename'] == f_in
                if cond.sum() == 0:
                    continue
                _cluster = cluster[cond.values]
                df_sub = df_pheno_feat.loc[cond, :]
                graph = skgraph(np.array(df_sub.loc[:, ['coordinate_x', 'coordinate_y']]),
                                n_neighbors=thres, mode='distance')
                graph.toarray()
                I, J, V = sp.find(graph)
                networks[roi] = dict()
                networks[roi]['I'] = I  # from cell
                networks[roi]['J'] = J  # to cell
                networks[roi]['V'] = V  # distance value
                networks[roi]['network'] = graph

                # Edge type summary
                edge_nums = np.zeros((n_cluster, n_cluster))
                for _i, _j in zip(I, J):
                    edge_nums[_cluster[_i], _cluster[_j]] += 1
                networks[roi]['edge_nums'] = edge_nums

                expected_percentage = np.zeros((n_cluster, n_cluster))
                for _i in range(n_cluster):
                    for _j in range(n_cluster):
                        expected_percentage[_i, _j] = sum(_cluster == _i) * sum(_cluster == _j)  # / len(df_sub)**2
                networks[roi]['expected_percentage'] = expected_percentage
                networks[roi]['num_cell'] = len(df_sub)
        else:  # construct neighborhood matrix using distance cut-off
            cal_dist = DistanceMetric.get_metric('euclidean')
            for i, row in df_slide_roi.iterrows(): #for i in df_slide_roi.index:       # Slide | ROI | input file
                slide, roi, f_in = row["Slide"], row["ROI"], row["input file"]
                cond = df_pheno_feat['filename'] == f_in
                if cond.sum() == 0:
                    continue
                networks[roi] = dict()
                _cluster = cluster[cond.values]
                df_sub = df_pheno_feat.loc[cond, :]
                dist = cal_dist.pairwise(df_sub.loc[:, ['coordinate_x', 'coordinate_y']].values)
                networks[roi]['dist'] = dist

                # expected percentage
                expected_percentage = np.zeros((n_cluster, n_cluster))
                for _i in range(n_cluster):
                    for _j in range(n_cluster):
                        expected_percentage[_i, _j] = sum(_cluster == _i) * sum(_cluster == _j)  # / len(df_sub)**2
                networks[roi]['expected_percentage'] = expected_percentage
                n_cells = len(df_sub)

                # edge num
                edge_nums = np.zeros_like(expected_percentage)
                for _i in range(n_cells):
                    for _j in range(n_cells):
                        if dist[_i, _j] > 0 and dist[_i, _j] < thres:
                            edge_nums[_cluster[_i], _cluster[_j]] += 1
                networks[roi]['edge_nums'] = edge_nums
                networks[roi]['num_cell'] = n_cells
        return networks

    def cluster_interaction_analysis(self, key_pheno, method="distance", level="slide", clustergrid=None, viz=False, **kwars):
        """Interaction analysis for clusters

        """
        assert method in ["distance", "kneighbor"], "Method can be either 'distance' or 'kneighbor'!"
        assert level in ["slide", "roi"], "Level can be either 'slide' or 'roi'!"
        default_thres = {
            "thres": 50,
            "k": 8
        }
        _ = "k" if method == "kneighbor" else "thres"
        thres = kwars.get(_, default_thres[_])
        """print("{}: {}".format(_, thres))"""
        networks = self._gather_roi_kneighbor_graphs(key_pheno, method=method, **{_: thres})

        if level == "slide":
            keys = ['edge_nums', 'expected_percentage', 'num_cell']
            for slide in self.df_cohort['Slide'].unique():
                cond = self.df_cohort['Slide'] == slide
                df_slide = self.df_cohort.loc[cond, :]
                rois = df_slide['ROI'].values
                '''keys = list(networks.values())[0].keys()'''
                networks[slide] = {}
                for key in keys:
                    networks[slide][key] = sum([networks[roi][key] for roi in rois if roi in networks])
                for roi in rois:
                    if roi in networks:
                        networks.pop(roi)

        interacts = {}
        epsilon = 1e-6
        for key, item in networks.items():
            edge_percentage = item['edge_nums'] / np.sum(item['edge_nums'])
            expected_percentage = item['expected_percentage'] / item['num_cell'] ** 2
            
            # Normalize
            interact_norm = np.log10(edge_percentage / (expected_percentage+epsilon) + epsilon)
            interact_norm[interact_norm == np.log10(epsilon)] = 0
            interacts[key] = interact_norm

        # plot
        for f_key, interact in interacts.items():
            plt.figure(figsize=(6, 6))
            ax = sns.heatmap(interact, center=np.log10(1 + epsilon),
                             cmap='RdBu_r', vmin=-1, vmax=1)
            ax.set_aspect('equal')
            plt.title(f_key)
            plt.show()

            if clustergrid is None:
                plt.figure()
                clustergrid = sns.clustermap(interact, center=np.log10(1 + epsilon),
                                             cmap='RdBu_r', vmin=-1, vmax=1,
                                             xticklabels=np.arange(interact.shape[0]),
                                             yticklabels=np.arange(interact.shape[0]),
                                             figsize=(6, 6))

                plt.title(f_key)
                plt.show()

            plt.figure()
            sns.clustermap(interact[clustergrid.dendrogram_row.reordered_ind, :] \
                               [:, clustergrid.dendrogram_row.reordered_ind],
                           center=np.log10(1 + 0.1), cmap='RdBu_r', vmin=-1, vmax=1,
                           xticklabels=clustergrid.dendrogram_row.reordered_ind,
                           yticklabels=clustergrid.dendrogram_row.reordered_ind,
                           figsize=(6, 6), row_cluster=False, col_cluster=False)
            plt.title(f_key)
            plt.show()

        # IMPORTANT: attch to individual ROIs
        self.attach_individual_roi_pheno(key_pheno, override=True)
        return interacts, clustergrid
    
    
    ###############################################################
    ###################### Marker Level ###########################
    ###############################################################

    def generate_summary(self, 
                        feat_type: str = "normed", 
                        normq: int = 75, 
                        vis_thres: bool = False, 
                        accumul_type: Union[List[str], str] = "sum",
                        verbose: bool = False,
                        get_thresholds: Callable = _get_thresholds,
                        ) -> List:

        """ Generate marker positive summaries and attach to each individual CyTOF image in the cohort
        """
        accumul_type = [accumul_type] if isinstance(accumul_type, str) else accumul_type
        assert feat_type in ["normed_scaled", "normed", ""], f"feature type {feat_type} not supported!"
        feat_name = f"{feat_type}" if feat_type=="" else f"{normq}{feat_type}" # the attribute name to achieve from cytof_img
        n_attr = f"df_feature{feat_name}" if feat_type=="" else f"df_feature_{feat_name}" # the attribute name to achieve from cytof_img
        df_feat = getattr(self, n_attr)

        # get thresholds
        thres = getattr(self, "marker_thresholds", {})
        thres[f"{normq}_{feat_type}"] = {}
        for _ in accumul_type: # for either marker sum or marker average
            print(f"Getting thresholds for cell {_} of all markers.")
            thres[f"{normq}_{feat_type}"][f"cell_{_}"] = get_thresholds(df_feature=df_feat, 
                                                                        features=self.dict_feat[f"cell_{_}"], 
                                                                        visualize=vis_thres,
                                                                        verbose=verbose)
        setattr(self, "marker_thresholds", thres)

        # split to each ROI
        _attr_marker_pos, seen = [], 0
        self.df_cohort['Slide_ROI'] = self.df_cohort[['Slide', 'ROI']].agg('_'.join, axis=1) 
        for n, cytof_img in self.cytof_images.items(): # ({slide}_{roi}, CytofImage)
            if not hasattr(cytof_img, n_attr): # cytof_img object instance may not contain _scaled feature
                cond = self.df_cohort['Slide_ROI'] == n
                input_file = self.df_cohort.loc[self.df_cohort['Slide_ROI'] == n, 'input file'].values[0]
                _df_feat = df_feat.loc[df_feat['filename'] == input_file].reset_index(drop=True)
                setattr(cytof_img, n_attr, _df_feat)
            else:
                _df_feat = getattr(cytof_img, n_attr)
            for _ in accumul_type: #["sum", "ave"]: # for either marker sum or marker average accumulation
                
                attr_marker_pos = cytof_img.marker_positive_summary(
                    thresholds=thres[f"{normq}_{feat_type}"][f"cell_{_}"], 
                    feat_type=feat_type,
                    normq=normq,
                    accumul_type=_
                )  
                if seen == 0:
                    _attr_marker_pos.append(attr_marker_pos)
            seen += 1
        return _attr_marker_pos

    def co_expression_analysis(self, 
                                normq: int = 75,
                                feat_type: str = "normed", 
                                co_exp_markers: Union[str, List] = "all", 
                                accumul_type: Union[str, List[str]] = "sum", 
                                verbose: bool = False,
                                clustergrid=None):


        # parameter checks and preprocess for analysis
        assert feat_type in ["original", "normed", "scaled"]
        if feat_type == "original":
            feat_name = ""
        elif feat_type == "normed":
            feat_name = f"{normq}normed"
        else:
            feat_name = f"{normq}normed_scaled" 

        # go through each roi, get their binary marker-cell expression
        roi_binary_express_dict = dict()
        for i, cytof_img in enumerate(self.cytof_images.values()):
            slide, roi = cytof_img.slide, cytof_img.roi
            df_binary_pos_exp = cytof_img.get_binary_pos_express_df(feat_name, accumul_type)
            roi_binary_express_dict[roi] = df_binary_pos_exp
        
        df_slide_roi = self.df_cohort

        # in cohort analysis, co-expression is always analyzed per Slide.
        # per ROI analysis can be done by calling the cytof_img individually
        slide_binary_express_dict = dict()

        # concatenate all ROIs into one, for each slide
        for slide in df_slide_roi["Slide"].unique():
            rois_of_one_slide = df_slide_roi.loc[df_slide_roi["Slide"] == slide, "ROI"]

            for i, filename_roi in enumerate(rois_of_one_slide):
                ind_roi = filename_roi.replace('.txt', '')

                if ind_roi not in roi_binary_express_dict:
                    print(f'ROI {ind_roi} in self.df_cohort, but not found in co-expression dicts')
                    continue
                
                try: # adding to existing slide key
                    # append dataframe row-wise, then perform co-expression analysis at the slide level 
                    slide_binary_express_dict[slide] = pd.concat([slide_binary_express_dict[slide], roi_binary_express_dict[ind_roi]], ignore_index=True)
                except KeyError: # # first iteration writing to slide, couldn't find the slide key
                    slide_binary_express_dict[slide] = roi_binary_express_dict[ind_roi].copy()

        slide_co_expression_dict = dict()

        # for each slide, perform co-expression analysis
        for slide_key, large_binary_express in slide_binary_express_dict.items():

            n_cells, n_markers = large_binary_express.shape
            df_pos_exp_val = large_binary_express.values

            # list all pair-wise combinations of the markers
            column_combinations = list(product(range(n_markers), repeat=2))

            # step to the numerator of the log odds ratio
            co_positive_prob_matrix = np.zeros((n_markers, n_markers))

            # step to the denominator of the log odds ratio
            expected_prob_matrix = np.zeros((n_markers, n_markers))

            for combo in column_combinations:
                marker1, marker2 = combo

                # count cells that positively expresses in both marker 1 and 2
                positive_prob_marker1_and_2 = np.sum(np.logical_and(df_pos_exp_val[:, marker1], df_pos_exp_val[:, marker2])) / n_cells
                co_positive_prob_matrix[marker1, marker2] = positive_prob_marker1_and_2
                
                # pair (A,B) counts is the same as pair (B,A) counts
                co_positive_prob_matrix[marker2, marker1] = positive_prob_marker1_and_2

                # count expected cells if marker 1 and 2 are independently expressed
                # p(A and B) = p(A) * p(B) = num_pos_a * num_pos_b / (num_cells * num_cells)
                # p(A) = number of positive cells / number of cells
                exp_prob_in_marker1_and_2 = np.sum(df_pos_exp_val[:, marker1]) * np.sum(df_pos_exp_val[:, marker2]) / n_cells**2
                expected_prob_matrix[marker1, marker2] = exp_prob_in_marker1_and_2
                expected_prob_matrix[marker2, marker1] = exp_prob_in_marker1_and_2

            # theta(i_pos and j_pos)
            df_co_pos = pd.DataFrame(co_positive_prob_matrix, index=df_binary_pos_exp.columns, columns=df_binary_pos_exp.columns)

            # E(x)
            df_expected = pd.DataFrame(expected_prob_matrix, index=df_binary_pos_exp.columns, columns=df_binary_pos_exp.columns)
            
            epsilon = 1e-6 # avoid divide by 0 or log(0)

            # Normalize and fix Nan
            edge_percentage_norm = np.log10(df_co_pos.values / (df_expected.values+epsilon) + epsilon)
            
            # if observed/expected = 0, then log odds ratio will have log10(epsilon)
            # no observed means co-expression cannot be determined, does not mean strong negative co-expression
            edge_percentage_norm[edge_percentage_norm == np.log10(epsilon)] = 0
    
            slide_co_expression_dict[slide_key] = (edge_percentage_norm, df_expected.columns)

        return slide_co_expression_dict