File size: 12,056 Bytes
b78c3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
#!/usr/bin/env python
# coding: utf-8
import os
import glob
import matplotlib.pyplot as plt
import pickle as pkl
import numpy as np
import argparse
import yaml
import pandas as pd
import skimage
import sys
import platform
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # cytof root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != 'Windows':
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from classes import CytofImage, CytofImageTiff
# import sys
# sys.path.append('../cytof')
from hyperion_preprocess import cytof_read_data_roi
from hyperion_analysis import batch_scale_feature
from utils import save_multi_channel_img
def makelist(string):
delim = ','
# return [float(_) for _ in string.split(delim)]
return [_ for _ in string.split(delim)]
def parse_opt():
parser = argparse.ArgumentParser('Cytof batch process', add_help=False)
parser.add_argument('--cohort_file', type=str,
help='a txt file with information of all file paths in the cohort')
parser.add_argument('--params_ROI', type=str,
help='a txt file with parameters used to process single ROI previously')
parser.add_argument('--outdir', type=str, help='directory to save outputs')
parser.add_argument('--save_channel_images', action='store_true',
help='an indicator of whether save channel images')
parser.add_argument('--save_seg_vis', action='store_true',
help='an indicator of whether save sample visualization of segmentation')
parser.add_argument('--show_seg_process', action='store_true',
help='an indicator of whether show segmentation process')
parser.add_argument('--quality_control_thres', type=int, default=50,
help='the smallest image size for an image to be kept')
return parser
def main(args):
# if args.save_channel_images:
# print("saving channel images")
# else:
# print("NOT saving channel images")
# if args.save_seg_vis:
# print("saving segmentation visualization")
# else:
# print("NOT saving segmentation visualization")
# if args.show_seg_process:
# print("showing segmentation process")
# else:
# print("NOT showing segmentation process")
# parameters used when processing single ROI
params_ROI = yaml.load(open(args.params_ROI, "rb"), Loader=yaml.Loader)
channel_dict = params_ROI["channel_dict"]
channels_remove = params_ROI["channels_remove"]
quality_control_thres = params_ROI["quality_control_thres"]
# name of the batch and saving directory
cohort_name = os.path.basename(args.cohort_file).split('.csv')[0]
print(cohort_name)
outdir = os.path.join(args.outdir, cohort_name)
if not os.path.exists(outdir):
os.makedirs(outdir)
feat_dirs = {}
feat_dirs['orig'] = os.path.join(outdir, "feature")
if not os.path.exists(feat_dirs['orig']):
os.makedirs(feat_dirs['orig'])
for q in params_ROI["normalize_qs"]:
dir_qnorm = os.path.join(outdir, f"feature_{q}normed")
feat_dirs[f"{q}normed"] = dir_qnorm
if not os.path.exists(dir_qnorm):
os.makedirs(dir_qnorm)
dir_img_cytof = os.path.join(outdir, "cytof_images")
if not os.path.exists(dir_img_cytof):
os.makedirs(dir_img_cytof)
if args.save_seg_vis:
dir_seg_vis = os.path.join(outdir, "segmentation_visualization")
if not os.path.exists(dir_seg_vis):
os.makedirs(dir_seg_vis)
# process batch files
cohort_files_ = pd.read_csv(args.cohort_file)
# cohort_files = [os.path.join(cohort_files_.loc[i, "path"], "{}".format(cohort_files_.loc[i, "ROI"])) \
# for i in range(cohort_files_.shape[0])]
print("Start processing {} files".format(cohort_files_.shape[0]))
cytof_imgs = {} # a dictionary contain the full file path of all results
seen = 0
dfs_scale_params = {} # key: quantile q; item: features to be scaled
df_io = pd.DataFrame(columns=["Slide", "ROI", "path", "output_file"])
df_bad_rois = pd.DataFrame(columns=["Slide", "ROI", "path", "size (W*H)"])
# for f_roi in cohort_files:
for i in range(cohort_files_.shape[0]):
slide, pth_i, f_roi_ = cohort_files_.loc[i, "Slide"], cohort_files_.loc[i, "path"], cohort_files_.loc[i, "ROI"]
f_roi = os.path.join(pth_i, f_roi_)
print("\nNow analyzing {}".format(f_roi))
roi = f_roi_.split('.txt')[0]
print("{}-{}".format(slide, roi))
## 1) Read and preprocess data
# read data: file name -> dataframe
cytof_img = cytof_read_data_roi(f_roi, slide, roi)
# quality control section
cytof_img.quality_control(thres=quality_control_thres)
if not cytof_img.keep:
H = max(cytof_img.df['Y'].values) + 1
W = max(cytof_img.df['X'].values) + 1
# if (H < args.quality_control_thres) or (W < quality_control_thres):
# print("At least one dimension of the image {}-{} is smaller than {}, skipping" \
# .format(cytof_img.slide, cytof_img.roi, quality_control_thres))
df_bad_rois = pd.concat([df_bad_rois,
pd.DataFrame.from_dict([{"Slide": slide,
"ROI": roi,
"path": pth_i,
"size (W*H)": (W,H)}])])
continue
if args.save_channel_images:
dir_roi_channel_img = os.path.join(outdir, "channel_images", f_roi_)
if not os.path.exists(dir_roi_channel_img):
os.makedirs(dir_roi_channel_img)
# markers used when capturing the image
cytof_img.get_markers()
# preprocess: fill missing values with 0.
cytof_img.preprocess()
# save info
if seen == 0:
f_info = open(os.path.join(outdir, 'readme.txt'), 'w')
f_info.write("Original markers: ")
f_info.write('\n{}'.format(", ".join(cytof_img.markers)))
f_info.write("\nOriginal channels: ")
f_info.write('\n{}'.format(", ".join(cytof_img.channels)))
## (optional): save channel images
if args.save_channel_images:
cytof_img.get_image()
cytof_img.save_channel_images(dir_roi_channel_img)
## remove special channels if defined
if len(channels_remove) > 0:
cytof_img.remove_special_channels(channels_remove)
cytof_img.get_image()
## 2) nuclei & membrane channels and visualization
cytof_img.define_special_channels(channel_dict)
assert len(cytof_img.channels) == cytof_img.image.shape[-1]
# #### Dataframe -> raw image
# cytof_img.get_image()
## (optional): save channel images
if args.save_channel_images:
cytof_img.get_image()
vis_channels = [k for (k, itm) in params_ROI["channel_dict"].items() if len(itm)>0]
cytof_img.save_channel_images(dir_roi_channel_img, channels=vis_channels)
## 3) Nuclei and cell segmentation
nuclei_seg, cell_seg = cytof_img.get_seg(use_membrane=params_ROI["use_membrane"],
radius=params_ROI["cell_radius"],
show_process=args.show_seg_process)
if args.save_seg_vis:
marked_image_nuclei = cytof_img.visualize_seg(segtype="nuclei", show=False)
save_multi_channel_img(skimage.img_as_ubyte(marked_image_nuclei[0:100, 0:100, :]),
os.path.join(dir_seg_vis, "{}_{}_nuclei_seg.png".format(slide, roi)))
marked_image_cell = cytof_img.visualize_seg(segtype="cell", show=False)
save_multi_channel_img(skimage.img_as_ubyte(marked_image_cell[0:100, 0:100, :]),
os.path.join(dir_seg_vis, "{}_{}_cell_seg.png".format(slide, roi)))
## 4) Feature extraction
cytof_img.extract_features(f_roi)
# save the original extracted feature
cytof_img.df_feature.to_csv(os.path.join(feat_dirs['orig'], "{}_{}_feature_summary.csv".format(slide, roi)),
index=False)
### 4.1) Log transform and quantile normalization
cytof_img.feature_quantile_normalization(qs=params_ROI["normalize_qs"], savedir=feat_dirs['orig'])
# calculate scaling parameters
## features to be scaled
if seen == 0:
s_features = [col for key, features in cytof_img.features.items() \
for f in features \
for col in cytof_img.df_feature.columns if col.startswith(f)]
f_info.write("\nChannels removed: ")
f_info.write("\n{}".format(", ".join(channels_remove)))
f_info.write("\nFinal markers: ")
f_info.write("\n{}".format(', '.join(cytof_img.markers)))
f_info.write("\nFinal channels: ")
f_info.write("\n{}".format(', '.join(cytof_img.channels)))
f_info.close()
## loop over quantiles
for q, quantile in cytof_img.dict_quantiles.items():
n_attr = f"df_feature_{q}normed"
df_normed = getattr(cytof_img, n_attr)
# save the normalized features to csv
df_normed.to_csv(os.path.join(feat_dirs[f"{q}normed"],
"{}_{}_feature_summary.csv".format(slide, roi)),
index=False)
if seen == 0:
dfs_scale_params[q] = df_normed[s_features]
dict_quantiles = cytof_img.dict_quantiles
else:
# dfs_scale_params[q] = dfs_scale_params[q].append(df_normed[s_features], ignore_index=True)
dfs_scale_params[q] = pd.concat([dfs_scale_params[q], df_normed[s_features]])
seen += 1
# save the class instance
out_file = os.path.join(dir_img_cytof, "{}_{}.pkl".format(slide, roi))
cytof_img.save_cytof(out_file)
cytof_imgs[roi] = out_file
# df_io = df_io.append({"Slide": slide,
# "ROI": roi,
# "path": pth_i,
# "output_file": out_file}, ignore_index=True)
df_io = pd.concat([df_io,
pd.DataFrame.from_dict([{"Slide": slide,
"ROI": roi,
"path": pth_i,
"output_file": os.path.abspath(out_file) # use absolute path
}])
])
for q in dict_quantiles.keys():
df_scale_params = dfs_scale_params[q].mean().to_frame(name="mean").transpose()
# df_scale_params = df_scale_params.append(dfs_scale_params[q].std().to_frame(name="std").transpose(),
# ignore_index=True)
df_scale_params = pd.concat([df_scale_params, dfs_scale_params[q].std().to_frame(name="std").transpose()])
df_scale_params.to_csv(os.path.join(outdir, f"{q}normed_scale_params.csv"), index=False)
# df_io = pd.DataFrame.from_dict(cytof_imgs, orient="index", columns=['output_file'])
# df_io.reset_index(inplace=True)
# df_io.rename(columns={'index': 'input_file'}, inplace=True)
df_io.to_csv(os.path.join(outdir, "input_output.csv"), index=False)
if len(df_bad_rois) > 0:
df_bad_rois.to_csv(os.path.join(outdir, "skipped_rois.csv"), index=False)
# scale feature
batch_scale_feature(outdir, normqs=params_ROI["normalize_qs"], df_io=df_io)
# return cytof_imgs, feat_dirs
if __name__ == "__main__":
parser = argparse.ArgumentParser('Cytof batch process', parents=[parse_opt()])
args = parser.parse_args()
main(args)
|