File size: 24,728 Bytes
b78c3b8 53cad39 b78c3b8 f13e642 b78c3b8 53cad39 b78c3b8 7b079d6 b78c3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
# give some time reference to the user
print('Importing Gradio app packages... (first launch takes about 3-5 minutes)')
import gradio as gr
import yaml
import skimage
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm
import plotly.express as px
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import os
import seaborn as sns
from cytof import classes
from classes import CytofImage, CytofCohort, CytofImageTiff
from cytof.hyperion_preprocess import cytof_read_data_roi
from cytof.utils import show_color_table
OUTDIR = './output'
def cytof_tiff_eval(file_path, marker_path, cytof_state):
# set to generic names because uploaded filenames is unpredictable
slide = 'slide0'
roi = 'roi1'
# read in the data
cytof_img, _ = cytof_read_data_roi(file_path, slide, roi)
# case 1. user uploaded TXT/CSV
if marker_path is None:
# get markers
cytof_img.get_markers()
# prepsocess
cytof_img.preprocess()
cytof_img.get_image()
# case 2. user uploaded TIFF
else:
labels_markers = yaml.load(open(marker_path, "rb"), Loader=yaml.Loader)
cytof_img.set_markers(**labels_markers)
viz = cytof_img.check_channels(ncols=3, savedir='.')
msg = f'Your uploaded TIFF has {len(cytof_img.markers)} markers'
cytof_state = cytof_img
return msg, viz, cytof_state
def channel_select(cytof_img):
# one for define unwanted channels, one for defining nuclei, one for defining membrane
return gr.Dropdown(choices=cytof_img.channels, multiselect=True), gr.Dropdown(choices=cytof_img.channels, multiselect=True), gr.Dropdown(choices=cytof_img.channels, multiselect=True)
def nuclei_select(cytof_img):
# one for defining nuclei, one for defining membrane
return gr.Dropdown(choices=cytof_img.channels, multiselect=True), gr.Dropdown(choices=cytof_img.channels, multiselect=True)
def modify_channels(cytof_img, unwanted_channels, nuc_channels, mem_channels):
"""
3-step function. 1) removes unwanted channels, 2) define nuclei channels, 3) define membrane channels
"""
cytof_img_updated = cytof_img.copy()
cytof_img_updated.remove_special_channels(unwanted_channels)
# define and remove nuclei channels
nuclei_define = {'nuclei' : nuc_channels}
channels_rm = cytof_img_updated.define_special_channels(nuclei_define)
cytof_img_updated.remove_special_channels(channels_rm)
# define and keep membrane channels
membrane_define = {'membrane' : mem_channels}
cytof_img_updated.define_special_channels(membrane_define)
# only get image when need to derive from df. CytofImageTIFF has inherent image attribute
if type(cytof_img_updated) is CytofImage:
cytof_img_updated.get_image()
nuclei_channel_str = ', '.join(channels_rm)
membrane_channel_str = ', '.join(mem_channels)
msg = 'Your remaining channels are: ' + ', '.join(cytof_img_updated.channels) + '.\n\n Nuclei channels: ' + nuclei_channel_str + '.\n\n Membrane channels: ' + membrane_channel_str
return msg, cytof_img_updated
def update_dropdown_options(cytof_img, selected_self, selected_other1, selected_other2):
"""
Remove the selected option in the dropdown from the other two dropdowns
"""
updated_choices = cytof_img.channels.copy()
unavail_options = selected_self + selected_other1 + selected_other2
for opt in unavail_options:
updated_choices.remove(opt)
return gr.Dropdown(choices=updated_choices+selected_other1, value=selected_other1, multiselect=True), gr.Dropdown(choices=updated_choices+selected_other2, value=selected_other2, multiselect=True)
def cell_seg(cytof_img, radius):
# check if membrane channel available
use_membrane = 'membrane' in cytof_img.channels
nuclei_seg, cell_seg = cytof_img.get_seg(use_membrane=use_membrane, radius=radius, show_process=False)
# visualize nuclei and cells segmentation
marked_image_nuclei = cytof_img.visualize_seg(segtype="nuclei", show=False)
marked_image_cell = cytof_img.visualize_seg(segtype="cell", show=False)
# visualizing nuclei and/or membrane, plus the first marker in channels
marker_visualized = cytof_img.channels[0]
# similar to plt.imshow()
fig = px.imshow(marked_image_cell)
# add scatter plot dots as legends
fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='white'), name='membrane boundaries'))
fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='yellow'), name='nucleus boundaries'))
fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='red'), name='nucleus'))
fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='green'), name=marker_visualized))
fig.update_layout(legend=dict(orientation="v", bgcolor='lightgray'))
return fig, cytof_img
def feature_extraction(cytof_img, cohort_state, percentile_threshold):
# extract and normalize all features
cytof_img.extract_features(filename=cytof_img.filename)
cytof_img.feature_quantile_normalization(qs=[percentile_threshold])
# create dir if not exist
if not os.path.isdir(OUTDIR):
os.makedirs(OUTDIR)
cytof_img.export_feature(f"df_feature_{percentile_threshold}normed", os.path.join(OUTDIR, f"feature_{percentile_threshold}normed.csv"))
df_feature = getattr(cytof_img, f"df_feature_{percentile_threshold}normed" )
# each file upload in Gradio will always have the same filename
# also the temp path created by Gradio is too long to be visually satisfying.
df_feature = df_feature.loc[:, df_feature.columns != 'filename']
# calculates quantiles between each marker and cell
cytof_img.calculate_quantiles(qs=[75])
dict_cytof_img = {f"{cytof_img.slide}_{cytof_img.roi}": cytof_img}
# convert to cohort and prepare downstream analysis
cytof_cohort = CytofCohort(cytof_images=dict_cytof_img, dir_out=OUTDIR)
cytof_cohort.batch_process_feature()
cytof_cohort.generate_summary()
cohort_state = cytof_cohort
msg = 'Feature extraction completed!'
return cytof_img, cytof_cohort, df_feature
def co_expression(cytof_img, percentile_threshold):
feat_name = f"{percentile_threshold}normed"
df_co_pos_prob, df_expected_prob = cytof_img.roi_co_expression(feature_name=feat_name, accumul_type='sum', return_components=False)
epsilon = 1e-6 # avoid divide by 0 or log(0)
# Normalize and fix Nan
edge_percentage_norm = np.log10(df_co_pos_prob.values / (df_expected_prob.values+epsilon) + epsilon)
# if observed/expected = 0, then log odds ratio will have log10(epsilon)
# no observed means co-expression cannot be determined, does not mean strong negative co-expression
edge_percentage_norm[edge_percentage_norm == np.log10(epsilon)] = 0
# do some post processing
marker_all_clean = [m.replace('_cell_sum', '') for m in df_expected_prob.columns]
# fig = plt.figure()
clustergrid = sns.clustermap(edge_percentage_norm,
# clustergrid = sns.clustermap(edge_percentage_norm,
center=np.log10(1 + epsilon), cmap='RdBu_r', vmin=-1, vmax=3,
xticklabels=marker_all_clean, yticklabels=marker_all_clean)
# retrieve matplotlib.Figure object from clustermap
fig = clustergrid.ax_heatmap.get_figure()
return fig, cytof_img
def spatial_interaction(cytof_img, percentile_threshold, method, cluster_threshold):
feat_name = f"{percentile_threshold}normed"
df_expected_prob, df_cell_interaction_prob = cytof_img.roi_interaction_graphs(feature_name=feat_name, accumul_type='sum', method=method, threshold=cluster_threshold)
epsilon = 1e-6
# Normalize and fix Nan
edge_percentage_norm = np.log10(df_cell_interaction_prob.values / (df_expected_prob.values+epsilon) + epsilon)
# if observed/expected = 0, then log odds ratio will have log10(epsilon)
# no observed means interaction cannot be determined, does not mean strong negative interaction
edge_percentage_norm[edge_percentage_norm == np.log10(epsilon)] = 0
# do some post processing
marker_all_clean = [m.replace('_cell_sum', '') for m in df_expected_prob.columns]
clustergrid = sns.clustermap(edge_percentage_norm,
# clustergrid = sns.clustermap(edge_percentage_norm,
center=np.log10(1 + epsilon), cmap='bwr', vmin=-2, vmax=2,
xticklabels=marker_all_clean, yticklabels=marker_all_clean)
# retrieve matplotlib.Figure object from clustermap
fig = clustergrid.ax_heatmap.get_figure()
return fig, cytof_img
def get_marker_pos_options(cytof_img):
options = cytof_img.channels.copy()
# nuclei is guaranteed to exist after defining channels
options.remove('nuclei')
# search for channel "membrane" and delete, skip if cannot find
try:
options.remove('membrane')
except ValueError:
pass
return gr.Dropdown(choices=options, interactive=True), gr.Dropdown(choices=options, interactive=True)
def viz_pos_marker_pair(cytof_img, marker1, marker2, percentile_threshold):
stain_nuclei1, stain_cell1, color_dict = cytof_img.visualize_marker_positive(
marker=marker1,
feature_type="normed",
accumul_type="sum",
normq=percentile_threshold,
show_boundary=True,
color_list=[(0,0,1), (0,1,0)], # negative, positive
color_bound=(0,0,0),
show_colortable=False)
stain_nuclei2, stain_cell2, color_dict = cytof_img.visualize_marker_positive(
marker=marker2,
feature_type="normed",
accumul_type="sum",
normq=percentile_threshold,
show_boundary=True,
color_list=[(0,0,1), (0,1,0)], # negative, positive
color_bound=(0,0,0),
show_colortable=False)
# create two subplots
fig = make_subplots(rows=1, cols=2, shared_xaxes=True, shared_yaxes=True, subplot_titles=(f"positive {marker1} cells", f"positive {marker2} cells"))
fig.add_trace(px.imshow(stain_cell1).data[0], row=1, col=1)
fig.add_trace(px.imshow(stain_cell2).data[0], row=1, col=2)
# Synchronize axes
fig.update_xaxes(matches='x')
fig.update_yaxes(matches='y')
fig.update_layout(title_text=" ")
return fig
def phenograph(cytof_cohort):
key_pheno = cytof_cohort.clustering_phenograph()
df_feats, commus, cluster_protein_exps, figs, figs_scatter, figs_exps = cytof_cohort.vis_phenograph(
key_pheno=key_pheno,
level="cohort",
save_vis=False,
show_plots=False,
plot_together=False)
umap = figs_scatter['cohort']
expression = figs_exps['cohort']['cell_sum']
return umap, cytof_cohort
def cluster_interaction_fn(cytof_img, cytof_cohort):
# avoid calling the clustering algorithm again. cohort is guaranteed to have one phenogrpah
key_pheno = list(cytof_cohort.phenograph.keys())[0]
epsilon = 1e-6
interacts, clustergrid = cytof_cohort.cluster_interaction_analysis(key_pheno)
interact = interacts[cytof_img.slide]
clustergrid_interaction = sns.clustermap(interact, center=np.log10(1+epsilon),
cmap='RdBu_r', vmin=-1, vmax=1,
xticklabels=np.arange(interact.shape[0]),
yticklabels=np.arange(interact.shape[0]))
# retrieve matplotlib.Figure object from clustermap
fig = clustergrid.ax_heatmap.get_figure()
return fig, cytof_img, cytof_cohort
def get_cluster_pos_options(cytof_img):
options = cytof_img.channels.copy()
# nuclei is guaranteed to exist after defining channels
options.remove('nuclei')
# search for channel "membrane" and delete, skip if cannot find
try:
options.remove('membrane')
except ValueError:
pass
return gr.Dropdown(choices=options, interactive=True)
def viz_cluster_positive(marker, percentile_threshold, cytof_img, cytof_cohort):
# avoid calling the clustering algorithm again. cohort is guaranteed to have one phenogrpah
key_pheno = list(cytof_cohort.phenograph.keys())[0]
# marker positive cell
stain_nuclei1, stain_cell1, color_dict = cytof_img.visualize_marker_positive(
marker=marker,
feature_type="normed",
accumul_type="sum",
normq=percentile_threshold,
show_boundary=True,
color_list=[(0,0,1), (0,1,0)], # negative, positive
color_bound=(0,0,0),
show_colortable=False)
# attch PhenoGraph results to individual ROIs
cytof_cohort.attach_individual_roi_pheno(key_pheno, override=True)
# PhenoGraph clustering visualization
pheno_stain_nuclei, pheno_stain_cell, color_dict = cytof_img.visualize_pheno(key_pheno=key_pheno)
# create two subplots
fig = make_subplots(rows=1, cols=2, shared_xaxes=True, shared_yaxes=True, subplot_titles=(f"positive {marker} cells", "PhenoGraph clusters on cells"))
fig.add_trace(px.imshow(stain_cell1).data[0], row=1, col=1)
fig.add_trace(px.imshow(pheno_stain_cell).data[0], row=1, col=2)
# Synchronize axes
fig.update_xaxes(matches='x')
fig.update_yaxes(matches='y')
fig.update_layout(title_text=" ")
return fig, cytof_img, cytof_cohort
# Gradio App template
with gr.Blocks() as demo:
cytof_state = gr.State(CytofImage())
# used in scenrios where users define/remove channels multiple times
cytof_original_state = gr.State(CytofImage())
gr.Markdown("# Step 1. Upload images")
gr.Markdown('You may upload one or two files depending on your use case.')
gr.Markdown('Case 1: A single TXT or CSV file that contains information about antibodies, rare heavy metal isotopes, and image channel names. Make sure files are following the CyTOF, IMC, or multiplex data convention. Leave the `Marker File` upload section blank.')
gr.Markdown('Case 2: Multiple file uploads required. First, a TIFF file containing Regions of Interest (ROIs) stored as multiplexed images. Then, upload a `Marker File` listing the channels to identify the antibodies.')
with gr.Row(): # first row where 1) asks for TIFF upload and 2) displays marker info
img_path = gr.File(file_types=[".tiff", '.tif', '.txt', '.csv'], label='(Required) A file containing Regions of Interest (ROIs) of multiplexed imaging slides.')
img_info = gr.Textbox(label='Marker information', info='Ensure the number of markers displayed below matches the expected number.')
with gr.Row(equal_height=True): # second row where 1) asks for marker file upload and 2) displays the visualization of individual channels
with gr.Column():
marker_path = gr.File(file_types=['.txt'], label='(Optional) Marker File. A list used to identify the antibodies in each TIFF layer. Upload one TXT file.')
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Upload")
img_viz = gr.Plot(label="Visualization of individual channels")
gr.Markdown("# Step 2. Modify existing channels")
gr.Markdown("After visualizing the individual channels, did you notice any that should not be included in the next steps? Remove those if so.")
gr.Markdown("Define channels designed to visualize nuclei. Optionally, define channels designed to visualize membranes.")
with gr.Row(equal_height=True): # third row selects nuclei channels
with gr.Column():
selected_unwanted_channel = gr.Dropdown(label='(Optional) Select the unwanted channel', interactive=True)
selected_nuclei = gr.Dropdown(label='(Required) Select the nuclei channel', interactive=True)
selected_membrane = gr.Dropdown(label='(Optional) Select the membrane channel', interactive=True)
define_btn = gr.Button('Modify channels')
channel_feedback = gr.Textbox(label='Channels info update')
# upload the file, and gather channel info. Then populate to the unwanted_channel, nuclei, and membrane components
submit_btn.click(
fn=cytof_tiff_eval, inputs=[img_path, marker_path, cytof_original_state], outputs=[img_info, img_viz, cytof_original_state],
api_name='upload'
).success(
fn=channel_select, inputs=cytof_original_state, outputs=[selected_unwanted_channel, selected_nuclei, selected_membrane]
)
selected_unwanted_channel.change(fn=update_dropdown_options, inputs=[cytof_original_state, selected_unwanted_channel, selected_nuclei, selected_membrane], outputs=[selected_nuclei, selected_membrane], api_name='dropdown_monitor1') # api_name used to identify in the endpoints
selected_nuclei.change(fn=update_dropdown_options, inputs=[cytof_original_state, selected_nuclei, selected_membrane, selected_unwanted_channel], outputs=[selected_membrane, selected_unwanted_channel], api_name='dropdown_monitor2')
selected_membrane.change(fn=update_dropdown_options, inputs=[cytof_original_state, selected_membrane, selected_nuclei, selected_unwanted_channel], outputs=[selected_nuclei, selected_unwanted_channel], api_name='dropdown_monitor3')
# modifies the channels per user input
define_btn.click(fn=modify_channels, inputs=[cytof_original_state, selected_unwanted_channel, selected_nuclei, selected_membrane], outputs=[channel_feedback, cytof_state])
gr.Markdown('# Step 3. Perform cell segmentation based on the defined nuclei and membrane channels')
with gr.Row(): # This row defines cell radius and performs segmentation
with gr.Column():
cell_radius = gr.Number(value=5, precision=0, label='Cell size', info='Please enter the desired radius for cell segmentation (in pixels; default value: 5)')
seg_btn = gr.Button("Segment")
seg_viz = gr.Plot(label="Visualization of the segmentation. Hover over graph to zoom, pan, save, etc.")
seg_btn.click(fn=cell_seg, inputs=[cytof_state, cell_radius], outputs=[seg_viz, cytof_state])
gr.Markdown('# Step 4. Extract cell features')
cohort_state = gr.State(CytofCohort())
with gr.Row(): # feature extraction related functinos
with gr.Column():
gr.CheckboxGroup(choices=['Yes', 'Yes', 'Yes'], label='Note: This step will take significantly longer than the previous ones. A 130MB IMC file takes about 14 minutes to compute. Did you read this note?')
norm_percentile = gr.Slider(minimum=50, maximum=99, step=1, value=75, interactive=True, label='Normalized quantification percentile')
extract_btn = gr.Button('Extract')
feat_df = gr.DataFrame(headers=['id','coordinate_x','coordinate_y','area_nuclei'], label='Feature extraction summary')
extract_btn.click(fn=feature_extraction, inputs=[cytof_state, cohort_state, norm_percentile],
outputs=[cytof_state, cohort_state, feat_df])
gr.Markdown('# Step 5. Downstream analysis')
with gr.Row(): # show co-expression and spatial analysis
with gr.Column():
co_exp_viz = gr.Plot(label="Visualization of cell coexpression of markers")
co_exp_btn = gr.Button('Run co-expression analysis')
with gr.Column():
spatial_viz = gr.Plot(label="Visualization of cell spatial interaction of markers")
cluster_method = gr.Radio(label='Select the clustering method', value='k-neighbor', choices=['k-neighbor', 'distance'], info='K-neighbor: classifies the threshold number of surrounding cells as neighborhood pairs. Distance: classifies cells within threshold distance as neighborhood pairs.')
cluster_threshold = gr.Slider(minimum=1, maximum=100, step=1, value=30, interactive=True, label='Clustering threshold')
spatial_btn = gr.Button('Run spatial interaction analysis')
co_exp_btn.click(fn=co_expression, inputs=[cytof_state, norm_percentile], outputs=[co_exp_viz, cytof_state])
# spatial_btn logic is in step6. This is populate the marker positive dropdown options
gr.Markdown('# Step 6. Visualize positive markers')
gr.Markdown('Select two markers for side-by-side comparison to visualize their positive states in cells. This serves two purposes. 1) Validate the co-expression analysis results. High expression level should mean a similar number of positive markers within the two slides, whereas low expression level mean a large difference of in the number of positive markers. 2) Validate the spatial interaction analysis results. High interaction means the two positive markers are in close proximity of each other (proximity is previously defined in `clustering threshold`), and vice versa.')
with gr.Row(): # two marker positive visualization - dropdown options
selected_marker1 = gr.Dropdown(label='Select one marker', info='Select a marker to visualize', interactive=True)
selected_marker2 = gr.Dropdown(label='Select another marker', info='Selecting the same marker as the previous one is allowed', interactive=True)
pos_viz_btn = gr.Button('Visualize these two markers')
with gr.Row(): # two marker positive visualization - visualization
marker_pos_viz = gr.Plot(label="Visualization of the two markers. Hover over graph to zoom, pan, save, etc.")
spatial_btn.click(
fn=spatial_interaction, inputs=[cytof_state, norm_percentile, cluster_method, cluster_threshold], outputs=[spatial_viz, cytof_state]
).success(
fn=get_marker_pos_options, inputs=[cytof_state], outputs=[selected_marker1, selected_marker2]
)
pos_viz_btn.click(fn=viz_pos_marker_pair, inputs=[cytof_state, selected_marker1, selected_marker2, norm_percentile], outputs=[marker_pos_viz])
gr.Markdown('# Step 7. Phenogrpah Clustering')
gr.Markdown('Cells can be clustered into sub-groups based on the extracted single-cell data. Time reference: a 300MB IMC file takes about 2 minutes to compute.')
with gr.Row(): # add two plots to visualize phenograph results
phenograph_umap = gr.Plot(label="UMAP results")
cluster_interaction = gr.Plot(label="Spatial interaction of clusters")
with gr.Row(equal_height=False): # action components
umap_btn = gr.Button('Run Phenograph clustering')
cluster_interact_btn = gr.Button('Run clustering interaction')
cluster_interact_btn.click(cluster_interaction_fn, inputs=[cytof_state, cohort_state], outputs=[cluster_interaction, cytof_state, cohort_state])
with gr.Row():
with gr.Column():
selected_cluster_marker = gr.Dropdown(label='Select one marker', info='Select a marker to visualize', interactive=True)
cluster_positive_btn = gr.Button('Compare clusters and positive markers')
with gr.Column():
cluster_v_positive = gr.Plot(label="Cluster assignment vs. positive cells. Hover over graph to zoom, pan, save, etc.")
umap_btn.click(
fn=phenograph, inputs=[cohort_state], outputs=[phenograph_umap, cohort_state]
).success(
fn=get_cluster_pos_options, inputs=[cytof_state], outputs=[selected_cluster_marker], api_name='selectClusterMarker'
)
cluster_positive_btn.click(fn=viz_cluster_positive, inputs=[selected_cluster_marker, norm_percentile, cytof_state, cohort_state], outputs=[cluster_v_positive, cytof_state, cohort_state])
# clear everything if clicked
clear_components = [img_path, marker_path, img_info, img_viz, channel_feedback, seg_viz, feat_df, co_exp_viz, spatial_viz, marker_pos_viz, phenograph_umap, cluster_interaction, cluster_v_positive]
clear_btn.click(lambda: [None]*len(clear_components), outputs=clear_components)
if __name__ == "__main__":
demo.launch()
|