File size: 24,728 Bytes
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53cad39
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13e642
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53cad39
b78c3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b079d6
b78c3b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# give some time reference to the user
print('Importing Gradio app packages... (first launch takes about 3-5 minutes)')

import gradio as gr
import yaml
import skimage
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm
import plotly.express as px
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import os
import seaborn as sns

from cytof import classes
from classes import CytofImage, CytofCohort, CytofImageTiff
from cytof.hyperion_preprocess import cytof_read_data_roi
from cytof.utils import show_color_table

OUTDIR = './output'

def cytof_tiff_eval(file_path, marker_path, cytof_state):
    # set to generic names because uploaded filenames is unpredictable
    slide = 'slide0'
    roi = 'roi1'

    # read in the data
    cytof_img, _ = cytof_read_data_roi(file_path, slide, roi)

    # case 1. user uploaded TXT/CSV
    if marker_path is None:
        # get markers
        cytof_img.get_markers()

        # prepsocess
        cytof_img.preprocess()
        cytof_img.get_image()

    # case 2. user uploaded TIFF
    else:
        labels_markers = yaml.load(open(marker_path, "rb"), Loader=yaml.Loader)
        cytof_img.set_markers(**labels_markers)

    viz = cytof_img.check_channels(ncols=3, savedir='.')

    msg = f'Your uploaded TIFF has {len(cytof_img.markers)} markers'
    cytof_state = cytof_img

    return msg, viz, cytof_state


def channel_select(cytof_img):
    # one for define unwanted channels, one for defining nuclei, one for defining membrane
    return gr.Dropdown(choices=cytof_img.channels, multiselect=True), gr.Dropdown(choices=cytof_img.channels, multiselect=True), gr.Dropdown(choices=cytof_img.channels, multiselect=True)

def nuclei_select(cytof_img):
    # one for defining nuclei, one for defining membrane
    return gr.Dropdown(choices=cytof_img.channels, multiselect=True), gr.Dropdown(choices=cytof_img.channels, multiselect=True)

def modify_channels(cytof_img, unwanted_channels, nuc_channels, mem_channels):
    """
    3-step function. 1) removes unwanted channels, 2) define nuclei channels, 3) define membrane channels
    """
    
    cytof_img_updated = cytof_img.copy()
    cytof_img_updated.remove_special_channels(unwanted_channels)

    # define and remove nuclei channels
    nuclei_define = {'nuclei' : nuc_channels}
    channels_rm = cytof_img_updated.define_special_channels(nuclei_define)
    cytof_img_updated.remove_special_channels(channels_rm)

    # define and keep membrane channels
    membrane_define = {'membrane' : mem_channels}
    cytof_img_updated.define_special_channels(membrane_define)

    # only get image when need to derive from df. CytofImageTIFF has inherent image attribute
    if type(cytof_img_updated) is CytofImage:
        cytof_img_updated.get_image()

    nuclei_channel_str = ', '.join(channels_rm)
    membrane_channel_str = ', '.join(mem_channels)
    msg = 'Your remaining channels are: ' + ', '.join(cytof_img_updated.channels) + '.\n\n Nuclei channels: ' + nuclei_channel_str + '.\n\n Membrane channels: ' + membrane_channel_str
    return msg, cytof_img_updated

def update_dropdown_options(cytof_img, selected_self, selected_other1, selected_other2):
    """
    Remove the selected option in the dropdown from the other two dropdowns
    """
    updated_choices = cytof_img.channels.copy()
    unavail_options = selected_self + selected_other1 + selected_other2
    for opt in unavail_options:
        updated_choices.remove(opt)

    return gr.Dropdown(choices=updated_choices+selected_other1, value=selected_other1, multiselect=True), gr.Dropdown(choices=updated_choices+selected_other2, value=selected_other2, multiselect=True)


def cell_seg(cytof_img, radius):

    # check if membrane channel available
    use_membrane = 'membrane' in cytof_img.channels
    nuclei_seg, cell_seg = cytof_img.get_seg(use_membrane=use_membrane, radius=radius, show_process=False)
    
    # visualize nuclei and cells segmentation
    marked_image_nuclei = cytof_img.visualize_seg(segtype="nuclei", show=False)
    marked_image_cell = cytof_img.visualize_seg(segtype="cell", show=False)

    # visualizing nuclei and/or membrane, plus the first marker in channels
    marker_visualized = cytof_img.channels[0]
    
    # similar to plt.imshow()
    fig = px.imshow(marked_image_cell)

    # add scatter plot dots as legends
    fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='white'), name='membrane boundaries'))
    fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='yellow'), name='nucleus boundaries'))
    fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='red'), name='nucleus'))
    fig.add_trace(go.Scatter(x=[None], y=[None], mode='markers', marker=dict(color='green'), name=marker_visualized))
    fig.update_layout(legend=dict(orientation="v", bgcolor='lightgray'))

    return fig, cytof_img

def feature_extraction(cytof_img, cohort_state, percentile_threshold):
    
    # extract and normalize all features
    cytof_img.extract_features(filename=cytof_img.filename)
    cytof_img.feature_quantile_normalization(qs=[percentile_threshold]) 

    # create dir if not exist
    if not os.path.isdir(OUTDIR):
        os.makedirs(OUTDIR)
    cytof_img.export_feature(f"df_feature_{percentile_threshold}normed", os.path.join(OUTDIR, f"feature_{percentile_threshold}normed.csv"))
    df_feature = getattr(cytof_img, f"df_feature_{percentile_threshold}normed" )

    # each file upload in Gradio will always have the same filename
    # also the temp path created by Gradio is too long to be visually satisfying.
    df_feature = df_feature.loc[:, df_feature.columns != 'filename']
    
    # calculates quantiles between each marker and cell
    cytof_img.calculate_quantiles(qs=[75])

    dict_cytof_img = {f"{cytof_img.slide}_{cytof_img.roi}": cytof_img}
    
    # convert to cohort and prepare downstream analysis
    cytof_cohort = CytofCohort(cytof_images=dict_cytof_img, dir_out=OUTDIR)
    cytof_cohort.batch_process_feature()
    cytof_cohort.generate_summary()

    cohort_state = cytof_cohort

    msg = 'Feature extraction completed!'
    return cytof_img, cytof_cohort, df_feature

def co_expression(cytof_img, percentile_threshold):
    feat_name = f"{percentile_threshold}normed"
    df_co_pos_prob, df_expected_prob = cytof_img.roi_co_expression(feature_name=feat_name, accumul_type='sum', return_components=False)
    epsilon = 1e-6 # avoid divide by 0 or log(0)

    # Normalize and fix Nan
    edge_percentage_norm = np.log10(df_co_pos_prob.values / (df_expected_prob.values+epsilon) + epsilon)
    
    # if observed/expected = 0, then log odds ratio will have log10(epsilon)
    # no observed means co-expression cannot be determined, does not mean strong negative co-expression
    edge_percentage_norm[edge_percentage_norm == np.log10(epsilon)] = 0
    
    # do some post processing
    marker_all_clean = [m.replace('_cell_sum', '') for m in df_expected_prob.columns]
    
    # fig = plt.figure()
    clustergrid = sns.clustermap(edge_percentage_norm,
                    # clustergrid = sns.clustermap(edge_percentage_norm,
                    center=np.log10(1 + epsilon), cmap='RdBu_r', vmin=-1, vmax=3,
                    xticklabels=marker_all_clean, yticklabels=marker_all_clean)
    
    # retrieve matplotlib.Figure object from clustermap
    fig = clustergrid.ax_heatmap.get_figure()

    return fig, cytof_img

def spatial_interaction(cytof_img, percentile_threshold, method, cluster_threshold):
    feat_name = f"{percentile_threshold}normed"

    df_expected_prob, df_cell_interaction_prob = cytof_img.roi_interaction_graphs(feature_name=feat_name, accumul_type='sum', method=method, threshold=cluster_threshold)
    epsilon = 1e-6

    # Normalize and fix Nan
    edge_percentage_norm = np.log10(df_cell_interaction_prob.values / (df_expected_prob.values+epsilon) + epsilon)

    # if observed/expected = 0, then log odds ratio will have log10(epsilon)
    # no observed means interaction cannot be determined, does not mean strong negative interaction
    edge_percentage_norm[edge_percentage_norm == np.log10(epsilon)] = 0
    
    # do some post processing
    marker_all_clean = [m.replace('_cell_sum', '') for m in df_expected_prob.columns]
    

    clustergrid = sns.clustermap(edge_percentage_norm,
                                # clustergrid = sns.clustermap(edge_percentage_norm,
                                center=np.log10(1 + epsilon), cmap='bwr', vmin=-2, vmax=2,
                                xticklabels=marker_all_clean, yticklabels=marker_all_clean)

    # retrieve matplotlib.Figure object from clustermap
    fig = clustergrid.ax_heatmap.get_figure()

    return fig, cytof_img

def get_marker_pos_options(cytof_img):
    options = cytof_img.channels.copy()

    # nuclei is guaranteed to exist after defining channels
    options.remove('nuclei')

    # search for channel "membrane" and delete, skip if cannot find
    try:
        options.remove('membrane')
    except ValueError:
        pass

    return gr.Dropdown(choices=options, interactive=True), gr.Dropdown(choices=options, interactive=True) 

def viz_pos_marker_pair(cytof_img, marker1, marker2, percentile_threshold):
  
    stain_nuclei1, stain_cell1, color_dict = cytof_img.visualize_marker_positive(
                                        marker=marker1,
                                        feature_type="normed",
                                        accumul_type="sum",
                                        normq=percentile_threshold,
                                        show_boundary=True,
                                        color_list=[(0,0,1), (0,1,0)], # negative, positive
                                        color_bound=(0,0,0),
                                        show_colortable=False)

    stain_nuclei2, stain_cell2, color_dict = cytof_img.visualize_marker_positive(
                                        marker=marker2,
                                        feature_type="normed",
                                        accumul_type="sum",
                                        normq=percentile_threshold,
                                        show_boundary=True,
                                        color_list=[(0,0,1), (0,1,0)], # negative, positive
                                        color_bound=(0,0,0),
                                        show_colortable=False)
  
    # create two subplots
    fig = make_subplots(rows=1, cols=2, shared_xaxes=True, shared_yaxes=True, subplot_titles=(f"positive {marker1} cells", f"positive {marker2} cells"))
    fig.add_trace(px.imshow(stain_cell1).data[0], row=1, col=1)
    fig.add_trace(px.imshow(stain_cell2).data[0], row=1, col=2)

    # Synchronize axes
    fig.update_xaxes(matches='x')
    fig.update_yaxes(matches='y')
    fig.update_layout(title_text=" ")

    return fig

def phenograph(cytof_cohort):
    key_pheno = cytof_cohort.clustering_phenograph()

    df_feats, commus, cluster_protein_exps, figs, figs_scatter, figs_exps = cytof_cohort.vis_phenograph(
        key_pheno=key_pheno,
        level="cohort",
        save_vis=False,
        show_plots=False,
        plot_together=False)

    umap = figs_scatter['cohort']
    expression = figs_exps['cohort']['cell_sum']

    return umap, cytof_cohort

def cluster_interaction_fn(cytof_img, cytof_cohort):
    # avoid calling the clustering algorithm again. cohort is guaranteed to have one phenogrpah
    key_pheno = list(cytof_cohort.phenograph.keys())[0]
    
    epsilon = 1e-6
    interacts, clustergrid = cytof_cohort.cluster_interaction_analysis(key_pheno)
    interact = interacts[cytof_img.slide]
    clustergrid_interaction = sns.clustermap(interact, center=np.log10(1+epsilon),
                                cmap='RdBu_r', vmin=-1, vmax=1,
                                xticklabels=np.arange(interact.shape[0]),
                                yticklabels=np.arange(interact.shape[0]))

    # retrieve matplotlib.Figure object from clustermap
    fig = clustergrid.ax_heatmap.get_figure()

    return fig, cytof_img, cytof_cohort

def get_cluster_pos_options(cytof_img):
    options = cytof_img.channels.copy()

    # nuclei is guaranteed to exist after defining channels
    options.remove('nuclei')

    # search for channel "membrane" and delete, skip if cannot find
    try:
        options.remove('membrane')
    except ValueError:
        pass

    return gr.Dropdown(choices=options, interactive=True)

def viz_cluster_positive(marker, percentile_threshold, cytof_img, cytof_cohort):

    # avoid calling the clustering algorithm again. cohort is guaranteed to have one phenogrpah
    key_pheno = list(cytof_cohort.phenograph.keys())[0]
   
    # marker positive cell
    stain_nuclei1, stain_cell1, color_dict = cytof_img.visualize_marker_positive(
                                        marker=marker,
                                        feature_type="normed",
                                        accumul_type="sum",
                                        normq=percentile_threshold,
                                        show_boundary=True,
                                        color_list=[(0,0,1), (0,1,0)], # negative, positive
                                        color_bound=(0,0,0),
                                        show_colortable=False)

    # attch PhenoGraph results to individual ROIs
    cytof_cohort.attach_individual_roi_pheno(key_pheno, override=True)

    # PhenoGraph clustering visualization
    pheno_stain_nuclei, pheno_stain_cell, color_dict = cytof_img.visualize_pheno(key_pheno=key_pheno)

    # create two subplots
    fig = make_subplots(rows=1, cols=2, shared_xaxes=True, shared_yaxes=True, subplot_titles=(f"positive {marker} cells", "PhenoGraph clusters on cells"))
    fig.add_trace(px.imshow(stain_cell1).data[0], row=1, col=1)
    fig.add_trace(px.imshow(pheno_stain_cell).data[0], row=1, col=2)

    # Synchronize axes
    fig.update_xaxes(matches='x')
    fig.update_yaxes(matches='y')
    fig.update_layout(title_text=" ")

    return fig, cytof_img, cytof_cohort

# Gradio App template
with gr.Blocks() as demo:
    cytof_state = gr.State(CytofImage())

     # used in scenrios where users define/remove channels multiple times
    cytof_original_state = gr.State(CytofImage())

    gr.Markdown("# Step 1. Upload images")
    gr.Markdown('You may upload one or two files depending on your use case.')
    gr.Markdown('Case 1: A single TXT or CSV file that contains information about antibodies, rare heavy metal isotopes, and image channel names. Make sure files are following the CyTOF, IMC, or multiplex data convention. Leave the `Marker File` upload section blank.')
    gr.Markdown('Case 2: Multiple file uploads required. First, a TIFF file containing Regions of Interest (ROIs) stored as multiplexed images. Then, upload a `Marker File` listing the channels to identify the antibodies.')

    with gr.Row(): # first row where 1) asks for TIFF upload and 2) displays marker info
        img_path = gr.File(file_types=[".tiff", '.tif', '.txt', '.csv'], label='(Required) A file containing Regions of Interest (ROIs) of multiplexed imaging slides.')
        img_info = gr.Textbox(label='Marker information', info='Ensure the number of markers displayed below matches the expected number.')

    with gr.Row(equal_height=True): # second row where 1) asks for marker file upload and 2) displays the visualization of individual channels
        with gr.Column():
            marker_path = gr.File(file_types=['.txt'], label='(Optional) Marker File. A list used to identify the antibodies in each TIFF layer. Upload one TXT file.')
            with gr.Row():
                clear_btn = gr.Button("Clear")
                submit_btn = gr.Button("Upload")
        img_viz = gr.Plot(label="Visualization of individual channels")
    
    gr.Markdown("# Step 2. Modify existing channels")
    gr.Markdown("After visualizing the individual channels, did you notice any that should not be included in the next steps? Remove those if so.")
    gr.Markdown("Define channels designed to visualize nuclei. Optionally, define channels designed to visualize membranes.")

    with gr.Row(equal_height=True): # third row selects nuclei channels
        with gr.Column():
            selected_unwanted_channel = gr.Dropdown(label='(Optional) Select the unwanted channel', interactive=True)
            selected_nuclei = gr.Dropdown(label='(Required) Select the nuclei channel', interactive=True)
            selected_membrane = gr.Dropdown(label='(Optional) Select the membrane channel', interactive=True)
            
            define_btn = gr.Button('Modify channels')

        channel_feedback = gr.Textbox(label='Channels info update')

        # upload the file, and gather channel info. Then populate to the unwanted_channel, nuclei, and membrane components
        submit_btn.click(
            fn=cytof_tiff_eval, inputs=[img_path, marker_path, cytof_original_state], outputs=[img_info, img_viz, cytof_original_state], 
            api_name='upload'
        ).success(
            fn=channel_select, inputs=cytof_original_state, outputs=[selected_unwanted_channel, selected_nuclei, selected_membrane]
        )

    selected_unwanted_channel.change(fn=update_dropdown_options, inputs=[cytof_original_state, selected_unwanted_channel, selected_nuclei, selected_membrane], outputs=[selected_nuclei, selected_membrane], api_name='dropdown_monitor1') # api_name used to identify in the endpoints
    selected_nuclei.change(fn=update_dropdown_options, inputs=[cytof_original_state, selected_nuclei, selected_membrane, selected_unwanted_channel], outputs=[selected_membrane, selected_unwanted_channel], api_name='dropdown_monitor2')
    selected_membrane.change(fn=update_dropdown_options, inputs=[cytof_original_state, selected_membrane, selected_nuclei, selected_unwanted_channel], outputs=[selected_nuclei, selected_unwanted_channel], api_name='dropdown_monitor3')

    # modifies the channels per user input
    define_btn.click(fn=modify_channels, inputs=[cytof_original_state, selected_unwanted_channel, selected_nuclei, selected_membrane], outputs=[channel_feedback, cytof_state])

    gr.Markdown('# Step 3. Perform cell segmentation based on the defined nuclei and membrane channels')

    with gr.Row(): # This row defines cell radius and performs segmentation
        with gr.Column():
            cell_radius = gr.Number(value=5, precision=0, label='Cell size', info='Please enter the desired radius for cell segmentation (in pixels; default value: 5)')
            seg_btn = gr.Button("Segment")
        seg_viz = gr.Plot(label="Visualization of the segmentation. Hover over graph to zoom, pan, save, etc.")
        seg_btn.click(fn=cell_seg, inputs=[cytof_state, cell_radius], outputs=[seg_viz, cytof_state])
            
    gr.Markdown('# Step 4. Extract cell features')

    cohort_state = gr.State(CytofCohort())
    with gr.Row(): # feature extraction related functinos
        with gr.Column():
            gr.CheckboxGroup(choices=['Yes', 'Yes', 'Yes'], label='Note: This step will take significantly longer than the previous ones. A 130MB IMC file takes about 14 minutes to compute. Did you read this note?')
            norm_percentile = gr.Slider(minimum=50, maximum=99, step=1, value=75, interactive=True, label='Normalized quantification percentile')
            extract_btn = gr.Button('Extract')
        feat_df = gr.DataFrame(headers=['id','coordinate_x','coordinate_y','area_nuclei'], label='Feature extraction summary')
    
        extract_btn.click(fn=feature_extraction, inputs=[cytof_state, cohort_state, norm_percentile], 
        outputs=[cytof_state, cohort_state, feat_df])
    
    gr.Markdown('# Step 5. Downstream analysis')

    with gr.Row(): # show co-expression and spatial analysis
        with gr.Column():
            co_exp_viz = gr.Plot(label="Visualization of cell coexpression of markers")
            co_exp_btn = gr.Button('Run co-expression analysis')

        with gr.Column():
            spatial_viz = gr.Plot(label="Visualization of cell spatial interaction of markers")
            cluster_method = gr.Radio(label='Select the clustering method', value='k-neighbor',  choices=['k-neighbor', 'distance'], info='K-neighbor: classifies the threshold number of surrounding cells as neighborhood pairs. Distance: classifies cells within threshold distance as neighborhood pairs.')
            cluster_threshold = gr.Slider(minimum=1, maximum=100, step=1, value=30, interactive=True, label='Clustering threshold')

            spatial_btn = gr.Button('Run spatial interaction analysis')

        co_exp_btn.click(fn=co_expression, inputs=[cytof_state, norm_percentile], outputs=[co_exp_viz, cytof_state])
        # spatial_btn logic is in step6. This is populate the marker positive dropdown options

    gr.Markdown('# Step 6. Visualize positive markers')
    gr.Markdown('Select two markers for side-by-side comparison to visualize their positive states in cells. This serves two purposes. 1) Validate the co-expression analysis results. High expression level should mean a similar number of positive markers within the two slides, whereas low expression level mean a large difference of in the number of positive markers. 2) Validate the spatial interaction analysis results. High interaction means the two positive markers are in close proximity of each other (proximity is previously defined in `clustering threshold`), and vice versa.')
    
    with gr.Row(): # two marker positive visualization - dropdown options
        selected_marker1 = gr.Dropdown(label='Select one marker', info='Select a marker to visualize', interactive=True)
        selected_marker2 = gr.Dropdown(label='Select another marker', info='Selecting the same marker as the previous one is allowed', interactive=True)
        pos_viz_btn = gr.Button('Visualize these two markers')

        
    with gr.Row(): # two marker positive visualization - visualization
        marker_pos_viz = gr.Plot(label="Visualization of the two markers. Hover over graph to zoom, pan, save, etc.")
    
        spatial_btn.click(
            fn=spatial_interaction, inputs=[cytof_state, norm_percentile, cluster_method, cluster_threshold], outputs=[spatial_viz, cytof_state]
        ).success(
            fn=get_marker_pos_options, inputs=[cytof_state], outputs=[selected_marker1, selected_marker2]
        )
        pos_viz_btn.click(fn=viz_pos_marker_pair, inputs=[cytof_state, selected_marker1, selected_marker2, norm_percentile], outputs=[marker_pos_viz])


    gr.Markdown('# Step 7. Phenogrpah Clustering')
    gr.Markdown('Cells can be clustered into sub-groups based on the extracted single-cell data. Time reference: a 300MB IMC file takes about 2 minutes to compute.')

    with gr.Row(): # add two plots to visualize phenograph results
        phenograph_umap = gr.Plot(label="UMAP results")
        cluster_interaction = gr.Plot(label="Spatial interaction of clusters")

    
    with gr.Row(equal_height=False): # action components
        umap_btn = gr.Button('Run Phenograph clustering')
        cluster_interact_btn = gr.Button('Run clustering interaction')
        cluster_interact_btn.click(cluster_interaction_fn, inputs=[cytof_state, cohort_state], outputs=[cluster_interaction, cytof_state, cohort_state])

    with gr.Row():
        with gr.Column():
            selected_cluster_marker = gr.Dropdown(label='Select one marker', info='Select a marker to visualize', interactive=True)
            cluster_positive_btn = gr.Button('Compare clusters and positive markers')

        with gr.Column():
            cluster_v_positive = gr.Plot(label="Cluster assignment vs. positive cells. Hover over graph to zoom, pan, save, etc.")


        umap_btn.click(
            fn=phenograph, inputs=[cohort_state], outputs=[phenograph_umap, cohort_state]
        ).success(
            fn=get_cluster_pos_options, inputs=[cytof_state], outputs=[selected_cluster_marker], api_name='selectClusterMarker'
        )
        cluster_positive_btn.click(fn=viz_cluster_positive, inputs=[selected_cluster_marker, norm_percentile, cytof_state, cohort_state], outputs=[cluster_v_positive, cytof_state, cohort_state])


    # clear everything if clicked
    clear_components = [img_path, marker_path, img_info, img_viz, channel_feedback, seg_viz, feat_df, co_exp_viz, spatial_viz, marker_pos_viz, phenograph_umap, cluster_interaction, cluster_v_positive]
    clear_btn.click(lambda: [None]*len(clear_components), outputs=clear_components)


if __name__ == "__main__":
    demo.launch()