Spaces:
Q4234
/
Runtime error

File size: 1,819 Bytes
bff1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d301d7f
 
 
 
 
bff1360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d301d7f
bff1360
 
 
 
 
 
d301d7f
 
 
 
 
 
 
 
 
bff1360
 
d301d7f
bff1360
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr

import ctransformers

class Z(object):
    def __init__(self):
        self.llm = None

    def init(self):
        pass

    def greet(self, txt0, paramTemp):
        prompt0 = txt0

        # for Wizard-Vicuna-13B
        #prompt00 = f'''USER: {prompt0}
        #ASSISTANT:'''

        # for starcoder
        prompt00 = f'''{prompt0}'''

        prompt00 = f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt0}

### Response:'''
        
        response0 = llm(prompt00, max_new_tokens=198, temperature=paramTemp) # 0.5, 0.3
        
        return f'{response0}'

from ctransformers import AutoModelForCausalLM

# wizzard vicuna
# see https://github.com/melodysdreamj/WizardVicunaLM
#llm = AutoModelForCausalLM.from_pretrained('TheBloke/Wizard-Vicuna-13B-Uncensored-GGML', model_file='Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin', model_type='llama')

#llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-12b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2')

#llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-7b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2')



# non-RLHF model
# 4 may 2023
# site https://huggingface.co/bigcode/starcoder
modelInfo = {'path':'NeoDim/starcoder-GGML', 'subPath':'starcoder-ggml-q8_0.bin', 'promptType':'raw', 'modelType':'starcoder'}
llm = AutoModelForCausalLM.from_pretrained(modelInfo['path'], model_file=modelInfo['subPath'], model_type=modelInfo['modelType'])



z = Z()
z.llm = llm
z.modelInfo = modelInfo
z.init()

def greet(prompt, temperature):
    global z
    return z.greet(prompt, temperature)

iface = gr.Interface(fn=greet, inputs=["text", gr.Slider(0.0, 1.0, value=0.41)], outputs="text")
iface.launch()