Spaces:
Sleeping
Sleeping
| #1. Importing lib | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.ensemble import RandomForestRegressor | |
| from sklearn.metrics import accuracy_score,r2_score | |
| #2.Data Preprocesing | |
| df=pd.read_csv("car data.csv") | |
| df.head() | |
| df.tail() | |
| df.info() | |
| df.describe() | |
| df.isnull().sum() | |
| df["Fuel_Type"].unique() | |
| df["Seller_Type"].unique() | |
| df["Transmission"].unique() | |
| df.replace({"Fuel_Type":{"Diesel":0,"Petrol":1,"CNG":2}},inplace=True) | |
| df.replace({"Seller_Type":{"Dealer":0,"Individual":1}},inplace=True) | |
| df.replace({"Transmission":{"Manual":0,"Automatic":1}},inplace=True) | |
| # Spliting Data into x and y(independent/dependent) | |
| x= df.drop(["Car_Name","Selling_Price"],axis=1) | |
| y = df["Selling_Price"] | |
| #3. Modeling Part | |
| x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42) | |
| model=RandomForestRegressor() | |
| model.fit(x_train,y_train) | |
| model.fit(x_test,y_test) | |
| x_predict=model.predict(x_train) | |
| x_accuracy=r2_score(x_predict,y_train) | |
| y_predict=model.predict(x_test) | |
| y_accuracy=r2_score(y_predict,y_test) | |
| #4. UI For Model(Help of Gradio) | |
| # Function to make predictions | |
| def predict_car_price(year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner): | |
| input_data = np.array([[year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner]]) | |
| prediction = model.predict(input_data) | |
| return f"Predicted Selling Price: ₹{prediction[0]:,.2f}" | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=predict_car_price, # Function that makes predictions | |
| inputs=[ | |
| gr.Slider(minimum=2003, maximum=2018, step=1, label="Car Year (Year of Manufacture)"), | |
| gr.Slider(minimum=0, maximum=93, step=1, label="Present Pcice "), | |
| gr.Slider(minimum=0, maximum=500000, step=1000, label="Kilometers Driven (km)"), | |
| gr.Dropdown([0, 1, 2], label="Fuel Type (0 = Diesel, 1 = Petrol, 2 = CNG)"), | |
| gr.Dropdown([0, 1], label="Seller Type (0 = Dealer, 1 = Individual)"), | |
| gr.Dropdown([0, 1], label="Transmission (0 = Manual, 1 = Automatic)"), | |
| gr.Dropdown([0, 1, 2, 3], label="Number of Owners (0 = First, 1 = Second, 2 = Third, 3 = Fourth)") | |
| ], # Input fields for the model's features | |
| outputs="text" # Output the predicted selling price as text | |
| ) | |
| # Launch the Gradio UI | |
| iface.launch() | |