Spaces:
Sleeping
Sleeping
#1. Importing lib | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.metrics import accuracy_score,r2_score | |
#2.Data Preprocesing | |
df=pd.read_csv("car data.csv") | |
df.head() | |
df.tail() | |
df.info() | |
df.describe() | |
df.isnull().sum() | |
df["Fuel_Type"].unique() | |
df["Seller_Type"].unique() | |
df["Transmission"].unique() | |
df.replace({"Fuel_Type":{"Diesel":0,"Petrol":1,"CNG":2}},inplace=True) | |
df.replace({"Seller_Type":{"Dealer":0,"Individual":1}},inplace=True) | |
df.replace({"Transmission":{"Manual":0,"Automatic":1}},inplace=True) | |
# Spliting Data into x and y(independent/dependent) | |
x= df.drop(["Car_Name","Selling_Price"],axis=1) | |
y = df["Selling_Price"] | |
#3. Modeling Part | |
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42) | |
model=RandomForestRegressor() | |
model.fit(x_train,y_train) | |
model.fit(x_test,y_test) | |
x_predict=model.predict(x_train) | |
x_accuracy=r2_score(x_predict,y_train) | |
y_predict=model.predict(x_test) | |
y_accuracy=r2_score(y_predict,y_test) | |
#4. UI For Model(Help of Gradio) | |
# Function to make predictions | |
def predict_car_price(year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner): | |
input_data = np.array([[year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner]]) | |
prediction = model.predict(input_data) | |
return f"Predicted Selling Price: ₹{prediction[0]:,.2f}" | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict_car_price, # Function that makes predictions | |
inputs=[ | |
gr.Slider(minimum=2003, maximum=2018, step=1, label="Car Year (Year of Manufacture)"), | |
gr.Slider(minimum=0, maximum=93, step=1, label="Present Pcice "), | |
gr.Slider(minimum=0, maximum=500000, step=1000, label="Kilometers Driven (km)"), | |
gr.Dropdown([0, 1, 2], label="Fuel Type (0 = Diesel, 1 = Petrol, 2 = CNG)"), | |
gr.Dropdown([0, 1], label="Seller Type (0 = Dealer, 1 = Individual)"), | |
gr.Dropdown([0, 1], label="Transmission (0 = Manual, 1 = Automatic)"), | |
gr.Dropdown([0, 1, 2, 3], label="Number of Owners (0 = First, 1 = Second, 2 = Third, 3 = Fourth)") | |
], # Input fields for the model's features | |
outputs="text" # Output the predicted selling price as text | |
) | |
# Launch the Gradio UI | |
iface.launch() | |