#1. Importing lib import gradio as gr import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import accuracy_score,r2_score #2.Data Preprocesing df=pd.read_csv("car data.csv") df.head() df.tail() df.info() df.describe() df.isnull().sum() df["Fuel_Type"].unique() df["Seller_Type"].unique() df["Transmission"].unique() df.replace({"Fuel_Type":{"Diesel":0,"Petrol":1,"CNG":2}},inplace=True) df.replace({"Seller_Type":{"Dealer":0,"Individual":1}},inplace=True) df.replace({"Transmission":{"Manual":0,"Automatic":1}},inplace=True) # Spliting Data into x and y(independent/dependent) x= df.drop(["Car_Name","Selling_Price"],axis=1) y = df["Selling_Price"] #3. Modeling Part x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42) model=RandomForestRegressor() model.fit(x_train,y_train) model.fit(x_test,y_test) x_predict=model.predict(x_train) x_accuracy=r2_score(x_predict,y_train) y_predict=model.predict(x_test) y_accuracy=r2_score(y_predict,y_test) #4. UI For Model(Help of Gradio) # Function to make predictions def predict_car_price(year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner): input_data = np.array([[year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner]]) prediction = model.predict(input_data) return f"Predicted Selling Price: ₹{prediction[0]:,.2f}" # Create the Gradio interface iface = gr.Interface( fn=predict_car_price, # Function that makes predictions inputs=[ gr.Slider(minimum=2003, maximum=2018, step=1, label="Car Year (Year of Manufacture)"), gr.Slider(minimum=0, maximum=93, step=1, label="Present Pcice "), gr.Slider(minimum=0, maximum=500000, step=1000, label="Kilometers Driven (km)"), gr.Dropdown([0, 1, 2], label="Fuel Type (0 = Diesel, 1 = Petrol, 2 = CNG)"), gr.Dropdown([0, 1], label="Seller Type (0 = Dealer, 1 = Individual)"), gr.Dropdown([0, 1], label="Transmission (0 = Manual, 1 = Automatic)"), gr.Dropdown([0, 1, 2, 3], label="Number of Owners (0 = First, 1 = Second, 2 = Third, 3 = Fourth)") ], # Input fields for the model's features outputs="text" # Output the predicted selling price as text ) # Launch the Gradio UI iface.launch()