File size: 2,367 Bytes
93db1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#1. Importing lib
  
import gradio as gr
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import accuracy_score,r2_score

#2.Data Preprocesing

df=pd.read_csv("car data.csv")

df.head()
df.tail()
df.info()
df.describe()
df.isnull().sum()

df["Fuel_Type"].unique()

df["Seller_Type"].unique()

df["Transmission"].unique()

df.replace({"Fuel_Type":{"Diesel":0,"Petrol":1,"CNG":2}},inplace=True)

df.replace({"Seller_Type":{"Dealer":0,"Individual":1}},inplace=True)

df.replace({"Transmission":{"Manual":0,"Automatic":1}},inplace=True)

# Spliting Data into x and y(independent/dependent)
x= df.drop(["Car_Name","Selling_Price"],axis=1)
y = df["Selling_Price"]

#3. Modeling Part

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
model=RandomForestRegressor()

model.fit(x_train,y_train)
model.fit(x_test,y_test)

x_predict=model.predict(x_train)
x_accuracy=r2_score(x_predict,y_train)

y_predict=model.predict(x_test)
y_accuracy=r2_score(y_predict,y_test)

#4. UI  For Model(Help of Gradio)

# Function to make predictions
def predict_car_price(year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner):
    input_data = np.array([[year,Present_Price, km_driven, fuel_type, seller_type, transmission,owner]])
    prediction = model.predict(input_data)
    return f"Predicted Selling Price: ₹{prediction[0]:,.2f}"

# Create the Gradio interface
iface = gr.Interface(
    fn=predict_car_price,  # Function that makes predictions
    inputs=[
        gr.Slider(minimum=2003, maximum=2018, step=1, label="Car Year (Year of Manufacture)"),
        gr.Slider(minimum=0, maximum=93, step=1, label="Present Pcice "),
        gr.Slider(minimum=0, maximum=500000, step=1000, label="Kilometers Driven (km)"),
        gr.Dropdown([0, 1, 2], label="Fuel Type (0 = Diesel, 1 = Petrol, 2 = CNG)"),
        gr.Dropdown([0, 1], label="Seller Type (0 = Dealer, 1 = Individual)"),
        gr.Dropdown([0, 1], label="Transmission (0 = Manual, 1 = Automatic)"),
        gr.Dropdown([0, 1, 2, 3], label="Number of Owners (0 = First, 1 = Second, 2 = Third, 3 = Fourth)")
    ],  # Input fields for the model's features
    outputs="text"  # Output the predicted selling price as text
)

# Launch the Gradio UI
iface.launch()