Spaces:
Sleeping
Sleeping
File size: 21,864 Bytes
c0f174a 6bc3901 5cf11d3 6bc3901 5cf11d3 5505986 c0f174a 5505986 6bc3901 c0f174a 6bc3901 c0f174a a67ea58 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 3bc73f1 c0f174a 3bc73f1 5cf11d3 c0f174a 6bc3901 c0f174a 3bc73f1 5505986 05d5cb6 5505986 c0f174a 5505986 c0f174a 0e2b62e 6bc3901 c0f174a 6bc3901 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 05d5cb6 c0f174a 3bc73f1 c0f174a 3bc73f1 c0f174a 3bc73f1 c0f174a 5505986 c0f174a 3bc73f1 c0f174a 3bc73f1 c0f174a 5505986 c0f174a 3bc73f1 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 3bc73f1 c0f174a 5505986 05d5cb6 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 3bc73f1 05d5cb6 5505986 05d5cb6 5505986 c0f174a 5505986 05d5cb6 5505986 05d5cb6 c0f174a 5505986 6bc3901 c0f174a 6bc3901 c0f174a 6bc3901 c0f174a 6bc3901 c0f174a 05d5cb6 c0f174a 5cf11d3 c0f174a 6bc3901 5505986 5cf11d3 5505986 5cf11d3 5505986 05d5cb6 c0f174a 3bc73f1 c0f174a 3bc73f1 c0f174a 5cf11d3 c0f174a 5cf11d3 c0f174a 5505986 c0f174a 5505986 c0f174a 5cf11d3 c0f174a 05d5cb6 5cf11d3 c0f174a 6bc3901 05d5cb6 5cf11d3 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 5505986 c0f174a 05d5cb6 5505986 05d5cb6 5505986 05d5cb6 5cf11d3 c0f174a 5505986 05d5cb6 5505986 05d5cb6 5505986 c0f174a 05d5cb6 5505986 05d5cb6 5505986 05d5cb6 c0f174a 5505986 05d5cb6 5505986 05d5cb6 5505986 6bc3901 05d5cb6 5505986 c0f174a 5505986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
# Import stuff
import streamlit as st
import time
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import os
import torch
import numpy as np
import pandas as pd
# Mitigates an error on Macs
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
# Set the titel
st.title("Sentiment Analysis App")
# Set the variables that should not be changed between refreshes of the app.
# logs is a map that records the results of past sentiment analysis queries.
# Type: dict() {"key" --> value[]}
# key: model_name (string) - The name of the model being used
# value: log[] (list) - The list of values that represent the model's results
# --> For the pretrained labels, len(log) = 4
# --> log[0] (int) - The prediction of the model on its input
# --> 0 = Positive
# --> 1 = Negative
# --> 2 = Neutral (if applicable)
# --> log[1] (string) - The tweet/inputted string
# --> log[2] (string) - The judgement of the tweet/input (Positive/Neutral/Negative)
# --> log[3] (string) - The score of the prediction (includes '%' sign)
# --> For the finetuned model, len(log) = 6
# --> log[0] (int) - The prediction of the model on the toxicity of the input
# --> 0 = Nontoxic
# --> 1 = Toxic
# --> log[1] (string) - The tweet/inputted string
# --> log[2] (string) - The highest scoring overall category of toxicity out of:
# 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', and 'identity_hate'
# --> log[3] (string) - The score of log[2] (includes '%' sign)
# --> log[4] (string) - The predicted type of toxicity, the highest scoring category of toxicity out of:
# 'obscene', 'threat', 'insult', and 'identity_hate'
# --> log[5] (string) - The score of log[4] (includes '%' sign)
if 'logs' not in st.session_state:
st.session_state.logs = dict()
# labels is a list of toxicity categories for the finetuned model
if 'labels' not in st.session_state:
st.session_state.labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
# filled is a boolean that checks whether logs is prepopulated with data.
if 'filled' not in st.session_state:
st.session_state.filled = False
# model is the finetuned model that I created. It wasn't working well locally on HuggingFace so I uploaded it to HuggingFace as
# a pretrained model. I also set it to evaluation mode.
if 'model' not in st.session_state:
st.session_state.model = AutoModelForSequenceClassification.from_pretrained("Ptato/Modified-Bert-Toxicity-Classification")
st.session_state.model.eval()
# tokenizer is the same tokenizer that is used by the "bert-base-uncased" model, which my finetuned model is built off of.
# tokenizer is used to input the tweets into my model for prediction.
if 'tokenizer' not in st.session_state:
st.session_state.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# This form allows users to select their preferred model for training
form = st.form(key='Sentiment Analysis')
# st.session_state.options pre-sets the available model choices.
st.session_state.options = [
'bertweet-base-sentiment-analysis',
'distilbert-base-uncased-finetuned-sst-2-english',
'twitter-roberta-base-sentiment',
'Modified Bert Toxicity Classification'
]
# box is the dropdown box that users use to select their choice of model
box = form.selectbox('Select Pre-trained Model:', st.session_state.options, key=1)
# tweet refers to the text box for users to input their tweets.
# Has a default value of "\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!"
# (Tweeted by former president Donald Trump)
tweet = form.text_input(label='Enter text to analyze:', value="\"We've seen in the last few months, unprecedented amounts of Voter Fraud.\" @SenTedCruz True!")
# Submit button
submit = form.form_submit_button(label='Submit')
# Read in some test data for prepopulation
if 'df' not in st.session_state:
st.session_state.df = pd.read_csv("test.csv")
# Initializes logs if not already initialized
if not st.session_state.filled:
# Iterates through all the options, initializing the logs for each.
for s in st.session_state.options:
st.session_state.logs[s] = []
# Pre-populates logs if not already pre-populated
if not st.session_state.filled:
# Esnure pre-population happen again
st.session_state.filled = True
# Initialize 10 entries
for x in range(10):
# Helps me see which entry is being evaluated on the backend
print(x)
# Shorten tweets, as some models may not handle longer ones
text = st.session_state.df["comment_text"].iloc[x][:128]
# Iterate thru the models
for s in st.session_state.options:
# Reset everything
# pline is the pipeline, which is used to load in the proper HuggingFace model for analysis
pline = None
# predictions refer to the predictions made by each model
predictions = None
# encoding is used by the finetuned model as input
encoding = None
# logits and probs are used to transform the results from predictions into usable/outputable data
logits = None
probs = None
# Perform different actions based on the model selected by the user
if s == 'bertweet-base-sentiment-analysis':
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
elif s == 'twitter-roberta-base-sentiment':
pline = pipeline(task="sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
else:
# encode data
encoding = st.session_state.tokenizer(text, return_tensors="pt")
encoding = {k: v.to(st.session_state.model.device) for k, v in encoding.items()}
# feed data into model and store the predictions
predictions = st.session_state.model(**encoding)
# modify the data to get probabilities for each toxicity (scale of 0 - 1)
logits = predictions.logits
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
# Reform the predictions to note where probabilities are actually high
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
# Prepare the log entry
log = []
# If there was a pipeline, then we used a pretrained model.
if pline:
# Get the prediction
predictions = pline(text)
# Initialize the log to the proper shape
log = [0] * 4
# Record the text
log[1] = text
# predictions ends up being length 1, so this only happens for the prediction with the highest probability (the returned value)
for p in predictions:
# Different models have different outputs, so we standardize them in the logs
# Note, some unecessary repetions may occur here
if s == 'bertweet-base-sentiment-analysis':
if p['label'] == "POS":
log[0] = 0
log[2] = "POS"
log[3] = f"{ round(p['score'] * 100, 1)}%"
elif p['label'] == "NEU":
log[0] = 2
log[2] = f"{ p['label'] }"
log[3] = f"{round(p['score'] * 100, 1)}%"
else:
log[2] = "NEG"
log[0] = 1
log[3] = f"{round(p['score'] * 100, 1)}%"
elif s == 'distilbert-base-uncased-finetuned-sst-2-english':
if p['label'] == "POSITIVE":
log[0] = 0
log[2] = "POSITIVE"
log[3] = (f"{round(p['score'] * 100, 1)}%")
else:
log[2] = ("NEGATIVE")
log[0] = 1
log[3] = (f"{round(p['score'] * 100, 1)}%")
elif s == 'twitter-roberta-base-sentiment':
if p['label'] == "LABEL_2":
log[0] = 0
log[2] = ("POSITIVE")
log[3] = (f"{round(p['score'] * 100, 1)}%")
elif p['label'] == "LABEL_0":
log[0] = 1
log[2] = ("NEGATIVE")
log[3] = f"{round(p['score'] * 100, 1)}%"
else:
log[0] = 2
log[2] = "NEUTRAL"
log[3] = f"{round(p['score'] * 100, 1)}%"
# Otherwise, we are using the finetuned model
else:
#Initialize log to the proper shape and store the text
log = [0] * 6
log[1] = text
# Determine whether or not there was toxicity
if max(predictions) == 0:
# No toxicity, input log values as such
log[0] = 0
log[2] = ("NO TOXICITY")
log[3] = (f"{100 - round(probs[0].item() * 100, 1)}%")
log[4] = ("N/A")
log[5] = ("N/A")
# There was toxicity
else:
# Record the toxicity
log[0] = 1
# Find the maximum overall toxic category and the maximum toxic category of each type
_max = 0
_max2 = 2
for i in range(1, len(predictions)):
if probs[i].item() > probs[_max].item():
_max = i
if i > 2 and probs[i].item() > probs[_max2].item():
_max2 = i
# Input data into log
log[2] = (st.session_state.labels[_max])
log[3] = (f"{round(probs[_max].item() * 100, 1)}%")
log[4] = (st.session_state.labels[_max2])
log[5] = (f"{round(probs[_max2].item() * 100, 1)}%")
# Add the log to the proper model's logs
st.session_state.logs[s].append(log)
# Check if there was a submitted input
if submit and tweet:
# Small loading message :)
with st.spinner('Analyzing...'):
time.sleep(1)
# Double check that there was an input
if tweet is not None:
# Reset variable
pline = None
# Set up shape for output
# Pretrained models should have 3 columns, while the finetuned model should have 5
if box != 'Modified Bert Toxicity Classification':
col1, col2, col3 = st.columns(3)
else:
col1, col2, col3, col4, col5 = st.columns(5)
# Perform different actions based on the model selected by the user
if box == 'bertweet-base-sentiment-analysis':
pline = pipeline(task="sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis")
elif box == 'twitter-roberta-base-sentiment':
pline = pipeline(task="sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
pline = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
else:
# encode data
encoding = st.session_state.tokenizer(tweet, return_tensors="pt")
encoding = {k: v.to(st.session_state.model.device) for k,v in encoding.items()}
# feed data into model and store the predictions
predictions = st.session_state.model(**encoding)
# modify the data to get probabilities for each toxicity (scale of 0 - 1)
logits = predictions.logits
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
# Reform the predictions to note where probabilities are actually high
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
# Title columns differently for different models
# The existence of pline implies that a pretrained model was used
if pline:
# Predict the tweet here
predictions = pline(tweet)
# Title the column
col2.header("Judgement")
else:
# Titling columns
col2.header("Category")
col4.header("Type")
col5.header("Score")
# Title more columns
col1.header("Tweet")
col3.header("Score")
# If we used a pretrained model, process the prediction below
if pline:
# Set log to correct shape
log = [0] * 4
# Store the tweet
log[1] = tweet
# predictions ends up being length 1, so this only happens for the prediction with the highest probability (the returned value)
for p in predictions:
# Different models have different outputs, so we standardize them in the logs
# Note, some unecessary repetions may occur here
if box == 'bertweet-base-sentiment-analysis':
if p['label'] == "POS":
# Only print the first 20 characters of the first line, so that the table lines up
# Also store the proper values into log while printing the outcome of this tweet
col1.success(tweet.split("\n")[0][:20])
log[0] = 0
col2.success("POS")
col3.success(f"{ round(p['score'] * 100, 1)}%")
log[2] = ("POS")
log[3] = (f"{ round(p['score'] * 100, 1)}%")
elif p['label'] == "NEU":
col1.warning(tweet.split("\n")[0][:20])
log[0] = 2
col2.warning(f"{ p['label'] }")
col3.warning(f"{round(p['score'] * 100, 1)}%")
log[2] = ("NEU")
log[3] = (f"{round(p['score'] * 100, 1)}%")
else:
log[0] = 1
col1.error(tweet.split("\n")[0][:20])
col2.error("NEG")
col3.error(f"{round(p['score'] * 100, 1)}%")
log[2] = ("NEG")
log[3] = (f"{round(p['score'] * 100, 1)}%")
elif box == 'distilbert-base-uncased-finetuned-sst-2-english':
if p['label'] == "POSITIVE":
col1.success(tweet.split("\n")[0][:20])
log[0] = 0
col2.success("POSITIVE")
log[2] = "POSITIVE"
col3.success(f"{round(p['score'] * 100, 1)}%")
log[3] = f"{round(p['score'] * 100, 1)}%"
else:
col2.error("NEGATIVE")
col1.error(tweet.split("\n")[0][:20])
log[2] = ("NEGATIVE")
log[0] = 1
col3.error(f"{round(p['score'] * 100, 1)}%")
log[3] = f"{round(p['score'] * 100, 1)}%"
elif box == 'twitter-roberta-base-sentiment':
if p['label'] == "LABEL_2":
log[0] = 0
col1.success(tweet.split("\n")[0][:20])
col2.success("POSITIVE")
col3.success(f"{round(p['score'] * 100, 1)}%")
log[3] = f"{round(p['score'] * 100, 1)}%"
log[2] = "POSITIVE"
elif p['label'] == "LABEL_0":
log[0] = 1
col1.error(tweet.split("\n")[0][:20])
col2.error("NEGATIVE")
col3.error(f"{round(p['score'] * 100, 1)}%")
log[3] = f"{round(p['score'] * 100, 1)}%"
log[2] = "NEGATIVE"
else:
log[0] = 2
col1.warning(tweet.split("\n")[0][:20])
col2.warning("NEUTRAL")
col3.warning(f"{round(p['score'] * 100, 1)}%")
log[3] = f"{round(p['score'] * 100, 1)}%"
log[2] = "NEUTRAL"
# Print out the past inputs in reverse order
for a in st.session_state.logs[box][::-1]:
if a[0] == 0:
# Again, only limit the tweet printed to 20 characters to have everything line up
col1.success(a[1].split("\n")[0][:20])
col2.success(a[2])
col3.success(a[3])
elif a[0] == 1:
col1.error(a[1].split("\n")[0][:20])
col2.error(a[2])
col3.error(a[3])
else:
col1.warning(a[1].split("\n")[0][:20])
col2.warning(a[2])
col3.warning(a[3])
# Add the log to the logs
st.session_state.logs[box].append(log)
# We used the finetuned model, so proceed below
else:
# Initialize log to the proper shape and store the tweet
log = [0] * 6
log[1] = tweet
# Check if nontoxic
if max(predictions) == 0:
# Only display the first 10 characters, as more columns means less characters can fit (make everything line up)
# Display and input the data as we go
col1.success(tweet.split("\n")[0][:10])
col2.success("NO TOXICITY")
col3.success(f"{100 - round(probs[0].item() * 100, 1)}%")
col4.success("N/A")
col5.success("N/A")
log[0] = 0
log[2] = "NO TOXICITY"
log[3] = (f"{100 - round(probs[0].item() * 100, 1)}%")
log[4] = ("N/A")
log[5] = ("N/A")
else:
# Look for the maximum toxicity category and the highest toxicity type
_max = 0
_max2 = 2
for i in range(1, len(predictions)):
if probs[i].item() > probs[_max].item():
_max = i
if i > 2 and probs[i].item() > probs[_max2].item():
_max2 = i
# Display and input the data as we go
col1.error(tweet.split("\n")[0][:10])
col2.error(st.session_state.labels[_max])
col3.error(f"{round(probs[_max].item() * 100, 1)}%")
col4.error(st.session_state.labels[_max2])
col5.error(f"{round(probs[_max2].item() * 100, 1)}%")
log[0] = 1
log[2] = (st.session_state.labels[_max])
log[3] = (f"{round(probs[_max].item() * 100, 1)}%")
log[4] = (st.session_state.labels[_max2])
log[5] = (f"{round(probs[_max2].item() * 100, 1)}%")
# Print out the past logs in reverse order
for a in st.session_state.logs[box][::-1]:
if a[0] == 0:
col1.success(a[1].split("\n")[0][:10])
col2.success(a[2])
col3.success(a[3])
col4.success(a[4])
col5.success(a[5])
elif a[0] == 1:
col1.error(a[1].split("\n")[0][:10])
col2.error(a[2])
col3.error(a[3])
col4.error(a[4])
col5.error(a[5])
else:
col1.warning(a[1].split("\n")[0][:10])
col2.warning(a[2])
col3.warning(a[3])
col4.warning(a[4])
col5.warning(a[5])
# Add result to logs
st.session_state.logs[box].append(log) |