File size: 1,843 Bytes
7263863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
import pandas as pd
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import pairwise_distances, cosine_similarity

tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")

df = pd.read_csv('data_final.csv')

MAX_LEN = 300

# @st.cache_resource
def embed_bert_cls(text, model, tokenizer):
    t = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=MAX_LEN)
    with torch.no_grad():
        model_output = model(**{k: v.to(model.device) for k, v in t.items()})
    embeddings = model_output.last_hidden_state[:, 0, :]
    embeddings = torch.nn.functional.normalize(embeddings)
    return embeddings[0].cpu().numpy()

books_vector = np.loadtxt('vectors.txt')

st.title('Приложение для рекомендации книг')

text = st.text_input('Введите запрос:')
num_results = st.number_input('Введите количество рекомендаций:', min_value=1, max_value=50, value=1)

recommend_button = st.button('Найти')

if text and recommend_button:
    user_text_pred = embed_bert_cls(text, model, tokenizer)
    list_ = pairwise_distances(user_text_pred.reshape(1, -1), books_vector).argsort()[0][:num_results]

    st.subheader('Топ рекомендуемых книг:')

    for i in list_:
        col_1, col_2 = st.columns([1, 3])

        with col_1:
            st.image(df['image_url'][i], use_column_width=True)
        with col_2:
            st.write(f'Название книги: {df["title"][i]}')
            st.write(f'Название книги: {df["author"][i]}')
            st.write(f'Название книги: {df["annotation"][i]}')
            st.write(f'{df["page_url"][i]}')