File size: 13,808 Bytes
8c639ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu

Utils for computing evaluation metrics.
"""
import argparse
import os
import warnings
from typing import Tuple

from Bio.Align import substitution_matrices
import numpy as np
import torch
from transformers import AutoTokenizer, EsmForProteinFolding
from torchtyping import TensorType

from core import residue_constants
from core import utils
from core import protein_mpnn as mpnn
import modules
import sampling


def mean(x):
    if len(x) == 0:
        return 0
    return sum(x) / len(x)


def calculate_seq_identity(seq1, seq2, seq_mask=None):
    identity = (seq1 == seq2.to(seq1)).float()
    if seq_mask is not None:
        identity *= seq_mask.to(seq1)
        return identity.sum(-1) / seq_mask.to(seq1).sum(-1).clamp(min=1)
    else:
        return identity.mean(-1)


def design_sequence(coords, model=None, num_seqs=1, disallow_aas=["C"]):
    # Returns list of strs; seqs like 'MKRLLDS', not aatypes
    if model is None:
        model = mpnn.get_mpnn_model()
    if isinstance(coords, str):
        temp_pdb = False
        pdb_fn = coords
    else:
        temp_pdb = True
        pdb_fn = f"tmp{np.random.randint(0, 1e8)}.pdb"
        gly_idx = residue_constants.restype_order["G"]
        gly_aatype = (torch.ones(coords.shape[0]) * gly_idx).long()
        utils.write_coords_to_pdb(coords, pdb_fn, batched=False, aatype=gly_aatype)

    with torch.no_grad():
        designed_seqs = mpnn.run_proteinmpnn(
            model=model,
            pdb_path=pdb_fn,
            num_seq_per_target=num_seqs,
            omit_AAs=disallow_aas,
        )

    if temp_pdb:
        os.system("rm " + pdb_fn)
    return designed_seqs


def get_esmfold_model(device=None):
    if device is None:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1").to(device)
    model.esm = model.esm.half()
    return model


def inference_esmfold(sequence_list, model, tokenizer):
    inputs = tokenizer(
        sequence_list,
        return_tensors="pt",
        padding=True,
        add_special_tokens=False,
    ).to(model.device)
    outputs = model(**inputs)
    # positions is shape (l, b, n, a, c)
    pred_coords = outputs.positions[-1].contiguous()
    plddts = (outputs.plddt[:, :, 1] * inputs.attention_mask).sum(
        -1
    ) / inputs.attention_mask.sum(-1).clamp(min=1e-3)
    return pred_coords, plddts


def predict_structures(sequences, model="esmfold", tokenizer=None, force_unk_to_X=True):
    # Expects seqs like 'MKRLLDS', not aatypes
    # model can be a model, or a string describing which pred model to load
    if isinstance(sequences, str):
        sequences = [sequences]
    if model == "esmfold":
        model = get_esmfold_model()
    device = model.device
    if tokenizer is None:
        tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")

    aatype = [utils.seq_to_aatype(seq).to(device) for seq in sequences]

    with torch.no_grad():
        if isinstance(model, EsmForProteinFolding):
            pred_coords, plddts = inference_esmfold(sequences, model, tokenizer)

    seq_lens = [len(s) for s in sequences]
    trimmed_coords = [c[: seq_lens[i]] for i, c in enumerate(pred_coords)]
    trimmed_coords_atom37 = [
        utils.atom37_coords_from_atom14(c, aatype[i])
        for i, c in enumerate(trimmed_coords)
    ]
    return trimmed_coords_atom37, plddts


def compute_structure_metric(coords1, coords2, metric="ca_rmsd", atom_mask=None):
    # coords1 tensor[l][a][3]
    def _tmscore(a, b, mask=None):
        length = len(b)
        dists = (a - b).pow(2).sum(-1)
        d0 = 1.24 * ((length - 15) ** (1 / 3)) - 1.8
        term = 1 / (1 + ((dists) / (d0**2)))
        if mask is None:
            return term.mean()
        else:
            term = term * mask
            return term.sum() / mask.sum().clamp(min=1)

    aligned_coords1_ca, (R, t) = utils.kabsch_align(coords1[:, 1], coords2[:, 1])
    aligned_coords1 = coords1 - coords1[:, 1:2].mean(0, keepdim=True)
    aligned_coords1 = aligned_coords1 @ R.t() + t
    if metric == "ca_rmsd":
        return (aligned_coords1_ca - coords2[:, 1]).pow(2).sum(-1).sqrt().mean()
    elif metric == "tm_score":
        tm = _tmscore(aligned_coords1_ca, coords2[:, 1])
        # TODO: return 1 - tm score for now so sorts work properly
        return 1 - tm
    elif metric == "allatom_tm":
        # Align on Ca, compute allatom TM
        assert atom_mask is not None
        return _tmscore(aligned_coords1, coords2, mask=atom_mask)
    elif metric == "allatom_lddt":
        assert atom_mask is not None
        lddt = modules.lddt(
            coords1.reshape(-1, 3),
            coords2.reshape(-1, 3),
            atom_mask.reshape(-1, 1),
            per_residue=False,
        )
        return lddt
    else:
        raise NotImplementedError


def compute_self_consistency(
    comparison_structures,  # can be sampled or ground truth
    sampled_sequences=None,
    mpnn_model=None,
    struct_pred_model=None,
    tokenizer=None,
    num_seqs=1,
    return_aux=False,
    metric="ca_rmsd",
    output_file=None,
):
    # Typically used for eval of backbone sampling or sequence design or joint sampling
    # (Maybe MPNN) + Fold + TM/RMSD
    # Expects seqs like 'MKRLLDS', not aatypes
    per_sample_primary_metrics = []
    per_sample_secondary_metrics = []
    per_sample_plddts = []
    per_sample_coords = []
    per_sample_seqs = []
    aux = {}
    for i, coords in enumerate(comparison_structures):
        if sampled_sequences is None:
            seqs_to_predict = design_sequence(
                coords, model=mpnn_model, num_seqs=num_seqs
            )
        else:
            seqs_to_predict = sampled_sequences[i]
        pred_coords, plddts = predict_structures(
            seqs_to_predict, model=struct_pred_model, tokenizer=tokenizer
        )
        primary_metric_name = "tm_score" if metric == "tm_score" else "ca_rmsd"
        secondary_metric_name = "tm_score" if metric == "both" else None
        primary_metrics = [
            compute_structure_metric(coords.to(pred), pred, metric=primary_metric_name)
            for pred in pred_coords
        ]
        if secondary_metric_name:
            secondary_metrics = [
                compute_structure_metric(
                    coords.to(pred), pred, metric=secondary_metric_name
                )
                for pred in pred_coords
            ]
            aux.setdefault(secondary_metric_name, []).extend(secondary_metrics)
        else:
            secondary_metrics = primary_metrics

        aux.setdefault("pred", []).extend(pred_coords)
        seqs_to_predict_arr = seqs_to_predict
        if isinstance(seqs_to_predict_arr, str):
            seqs_to_predict_arr = [seqs_to_predict_arr]

        aux.setdefault("seqs", []).extend(seqs_to_predict_arr)
        aux.setdefault("plddt", []).extend(plddts)
        aux.setdefault("rmsd", []).extend(primary_metrics)

        # Report best rmsd design only among MPNN reps
        all_designs = [
            (m, p, t, c, s)
            for m, p, t, c, s in zip(
                primary_metrics,
                plddts,
                secondary_metrics,
                pred_coords,
                seqs_to_predict_arr,
            )
        ]
        best_rmsd_design = min(all_designs, key=lambda x: x[0])
        per_sample_primary_metrics.append(best_rmsd_design[0].detach().cpu())
        per_sample_plddts.append(best_rmsd_design[1].detach().cpu())
        per_sample_secondary_metrics.append(best_rmsd_design[2].detach().cpu())
        per_sample_coords.append(best_rmsd_design[3])
        per_sample_seqs.append(best_rmsd_design[4])
    best_idx = np.argmin(per_sample_primary_metrics)
    metrics = {
        "sc_rmsd_best": per_sample_primary_metrics[best_idx],
        "sc_plddt_best": per_sample_plddts[best_idx],
        "sc_rmsd_mean": mean(per_sample_primary_metrics),
        "sc_plddt_mean": mean(per_sample_plddts),
    }
    if metric == "both":
        metrics["sc_tmscore_best"] = per_sample_secondary_metrics[best_idx]
        metrics["sc_tmscore_mean"] = mean(per_sample_secondary_metrics)

    if output_file:
        pred_coords = per_sample_coords
        designed_seqs = per_sample_seqs

        if torch.isnan(pred_coords[best_idx]).sum() == 0:
            designed_seq = utils.seq_to_aatype(designed_seqs[best_idx])
            utils.write_coords_to_pdb(
                pred_coords[best_idx],
                output_file,
                batched=False,
                aatype=designed_seq,
            )

    if return_aux:
        return metrics, best_idx, aux
    else:
        return metrics, best_idx


def compute_secondary_structure_content(coords_batch):
    dssp_sample = []
    for i, c in enumerate(coords_batch):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            dssp_str = utils.get_3state_dssp(coords=c)
        if dssp_str is None or len(dssp_str) == 0:
            pass
        else:
            dssp_sample.append(dssp_str)
    dssp_sample = "".join(dssp_sample)
    metrics = {}
    metrics["sample_pct_beta"] = mean([c == "E" for c in dssp_sample])
    metrics["sample_pct_alpha"] = mean([c == "H" for c in dssp_sample])
    return metrics


def compute_bond_length_metric(
    cropped_coords_list, cropped_aatypes_list, atom_mask=None
):
    bond_length_dict = utils.batched_fullatom_bond_lengths_from_coords(
        cropped_coords_list, cropped_aatypes_list, atom_mask=atom_mask
    )
    all_errors = {}
    for aa1, d in bond_length_dict.items():
        aa3 = residue_constants.restype_1to3[aa1]
        per_bond_errors = []
        for bond, lengths in d.items():
            a1, a2 = bond.split("-")
            ideal_val = None
            for bond in residue_constants.standard_residue_bonds[aa3]:
                if (
                    bond.atom1_name == a1
                    and bond.atom2_name == a2
                    or bond.atom1_name == a2
                    and bond.atom2_name == a1
                ):
                    ideal_val = bond.length
                    break
            error = (np.array(lengths) - ideal_val) ** 2
            per_bond_errors.append(error.mean() ** 0.5)
        if len(per_bond_errors) > 0:  # often no Cys
            per_res_errors = np.mean(per_bond_errors)
            all_errors[aa1] = per_res_errors
    return np.mean(list(all_errors.values()))


def evaluate_backbone_generation(
    model,
    n_samples=1,
    mpnn_model=None,
    struct_pred_model=None,
    tokenizer=None,
    sample_length_range=(50, 512),
):
    sampling_config = sampling.default_backbone_sampling_config()
    trimmed_coords, seq_mask = sampling.draw_backbone_samples(
        model,
        n_samples=n_samples,
        sample_length_range=sample_length_range,
        **vars(sampling_config),
    )
    sc_metrics, best_idx, aux = compute_self_consistency(
        trimmed_coords,
        mpnn_model=mpnn_model,
        struct_pred_model=struct_pred_model,
        tokenizer=tokenizer,
        return_aux=True,
    )
    dssp_metrics = compute_secondary_structure_content(trimmed_coords)
    all_metrics = {**sc_metrics, **dssp_metrics}
    all_metrics = {f"bb_{k}": v for k, v in all_metrics.items()}
    return all_metrics, (trimmed_coords, seq_mask, best_idx, aux["pred"], aux["seqs"])


def evaluate_allatom_generation(
    model,
    n_samples,
    two_stage_sampling=True,
    struct_pred_model=None,
    tokenizer=None,
    sample_length_range=(50, 512),
):
    # Convert allatom model to codesign model by loading miniMPNN
    model.task = "codesign"
    model.load_minimpnn()
    model.eval()

    sampling_config = sampling.default_allatom_sampling_config()
    ret = sampling.draw_allatom_samples(
        model,
        n_samples=n_samples,
        two_stage_sampling=two_stage_sampling,
        **vars(sampling_config),
    )
    (
        cropped_samp_coords,
        cropped_samp_aatypes,
        samp_atom_mask,
        stage1_coords,
        seq_mask,
    ) = ret

    # Compute self consistency
    if struct_pred_model is None:
        struct_pred_model = EsmForProteinFolding.from_pretrained(
            "facebook/esmfold_v1"
        ).to(device)
        struct_pred_model.esm = struct_pred_model.esm.half()
    if tokenizer is None:
        tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
    designed_seqs = [utils.aatype_to_seq(a) for a in cropped_samp_aatypes]
    sc_metrics, best_idx, sc_aux = compute_self_consistency(
        comparison_structures=cropped_samp_coords,
        sampled_sequences=designed_seqs,
        struct_pred_model=struct_pred_model,
        tokenizer=tokenizer,
        return_aux=True,
    )
    aa_metrics_out = {f"aa_{k}": v for k, v in sc_metrics.items()}

    # Compute secondary structure content
    cropped_bb_coords = [c[..., [0, 1, 2, 4], :] for c in cropped_samp_coords]
    dssp_metrics = compute_secondary_structure_content(cropped_bb_coords)
    aa_metrics_out = {**aa_metrics_out, **dssp_metrics}

    # Compute bond length RMSE
    if two_stage_sampling:  # compute on original sample
        bond_rmse_coords = stage1_coords
    else:
        bond_rmse_coords = cropped_samp_coords
    bond_rmse = compute_bond_length_metric(
        bond_rmse_coords, cropped_samp_aatypes, samp_atom_mask
    )
    aa_metrics_out["aa_bond_rmse"] = bond_rmse

    # Convert codesign model back to allatom model and return metrics
    model.task = "allatom"
    model.remove_minimpnn()
    aa_aux_out = (
        cropped_samp_coords,
        cropped_samp_aatypes,
        samp_atom_mask,
        sc_aux["pred"],
        best_idx,
    )
    return aa_metrics_out, aa_aux_out