File size: 36,468 Bytes
8c639ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu

Various utils for handling protein data.
"""

import os
import shlex
import subprocess
import sys
import torch
import yaml
import argparse

from einops import rearrange, repeat
import numpy as np
import torch
import torch.nn.functional as F
import Bio
from Bio.PDB.DSSP import DSSP

from core import protein
from core import protein_mpnn
from core import residue_constants


PATH_TO_TMALIGN = "/home/alexechu/essentials_kit/ml_utils/align/TMalign/TMalign"


################ STRUCTURE/FORMAT UTILS #############################


def aatype_to_seq(aatype, seq_mask=None):
    if seq_mask is None:
        seq_mask = torch.ones_like(aatype)

    mapping = residue_constants.restypes_with_x
    mapping = mapping + ["<mask>"]

    unbatched = False
    if len(aatype.shape) == 1:
        unbatched = True
        aatype = [aatype]
        seq_mask = [seq_mask]

    seqs = []
    for i, ai in enumerate(aatype):
        seq = []
        for j, aa in enumerate(ai):
            if seq_mask[i][j] == 1:
                try:
                    seq.append(mapping[aa])
                except IndexError:
                    print(aatype[i])
                    raise Exception(f"Error in mapping {aa} at {i},{j}")
        seqs.append("".join(seq))

    if unbatched:
        seqs = seqs[0]
    return seqs


def seq_to_aatype(seq, num_tokens=21):
    if num_tokens == 20:
        mapping = residue_constants.restype_order
    if num_tokens == 21:
        mapping = residue_constants.restype_order_with_x
    if num_tokens == 22:
        mapping = residue_constants.restype_order_with_x
        mapping["<mask>"] = 21
    return torch.Tensor([mapping[aa] for aa in seq]).long()


def batched_seq_to_aatype_and_mask(seqs, max_len=None):
    if max_len is None:
        max_len = max([len(s) for s in seqs])
    aatypes = []
    seq_mask = []
    for s in seqs:
        pad_size = max_len - len(s)
        aatype = seq_to_aatype(s)
        aatypes.append(F.pad(aatype, (0, pad_size)))
        mask = torch.ones_like(aatype).float()
        seq_mask.append(F.pad(mask, (0, pad_size)))
    return torch.stack(aatypes), torch.stack(seq_mask)


def atom37_mask_from_aatype(aatype, seq_mask=None):
    # source_mask is (21,37) originally
    source_mask = torch.Tensor(residue_constants.restype_atom37_mask).to(aatype.device)
    bb_atoms = source_mask[residue_constants.restype_order["G"]][None]
    # Use only the first 20 plus bb atoms for X, mask
    source_mask = torch.cat([source_mask[:-1], bb_atoms, bb_atoms], 0)
    atom_mask = source_mask[aatype]
    if seq_mask is not None:
        atom_mask *= seq_mask[..., None]
    return atom_mask


def atom37_coords_from_atom14(atom14_coords, aatype, return_mask=False):
    # Unbatched
    device = atom14_coords.device
    atom37_coords = torch.zeros((atom14_coords.shape[0], 37, 3)).to(device)
    for i in range(atom14_coords.shape[0]):  # per residue
        aa = aatype[i]
        aa_3name = residue_constants.restype_1to3[residue_constants.restypes[aa]]
        atom14_atoms = residue_constants.restype_name_to_atom14_names[aa_3name]
        for j in range(14):
            atom_name = atom14_atoms[j]
            if atom_name != "":
                atom37_idx = residue_constants.atom_order[atom_name]
                atom37_coords[i, atom37_idx, :] = atom14_coords[i, j, :]

    if return_mask:
        atom37_mask = atom37_mask_from_aatype(aatype)
        return atom37_coords, atom37_mask
    return atom37_coords


def atom73_mask_from_aatype(aatype, seq_mask=None):
    source_mask = torch.Tensor(residue_constants.restype_atom73_mask).to(aatype.device)
    atom_mask = source_mask[aatype]
    if seq_mask is not None:
        atom_mask *= seq_mask[..., None]
    return atom_mask


def atom37_to_atom73(atom37, aatype, return_mask=False):
    # Unbatched
    atom73 = torch.zeros((atom37.shape[0], 73, 3)).to(atom37)
    for i in range(atom37.shape[0]):
        aa = aatype[i]
        aa1 = residue_constants.restypes[aa]
        for j, atom37_name in enumerate(residue_constants.atom_types):
            atom73_name = atom37_name
            if atom37_name not in ["N", "CA", "C", "O", "CB"]:
                atom73_name = aa1 + atom73_name
            if atom73_name in residue_constants.atom73_names_to_idx:
                atom73_idx = residue_constants.atom73_names_to_idx[atom73_name]
                atom73[i, atom73_idx, :] = atom37[i, j, :]

    if return_mask:
        atom73_mask = atom73_mask_from_aatype(aatype)
        return atom73, atom73_mask
    return atom73


def atom73_to_atom37(atom73, aatype, return_mask=False):
    # Unbatched
    atom37_coords = torch.zeros((atom73.shape[0], 37, 3)).to(atom73)
    for i in range(atom73.shape[0]):  # per residue
        aa = aatype[i]
        aa1 = residue_constants.restypes[aa]
        for j, atom_type in enumerate(residue_constants.atom_types):
            atom73_name = atom_type
            if atom73_name not in ["N", "CA", "C", "O", "CB"]:
                atom73_name = aa1 + atom73_name
            if atom73_name in residue_constants.atom73_names_to_idx:
                atom73_idx = residue_constants.atom73_names_to_idx[atom73_name]
                atom37_coords[i, j, :] = atom73[i, atom73_idx, :]

    if return_mask:
        atom37_mask = atom37_mask_from_aatype(aatype)
        return atom37_coords, atom37_mask
    return atom37_coords


def get_dmap(pdb, atoms=["N", "CA", "C", "O"], batched=True, out="torch", device=None):
    def _dmap_from_coords(coords):
        coords = coords.contiguous()
        dmaps = torch.cdist(coords, coords).unsqueeze(1)
        if out == "numpy":
            return dmaps.detach().cpu().numpy()
        elif out == "torch":
            if device is not None:
                return dmaps.to(device)
            else:
                return dmaps

    if isinstance(pdb, str):  # input is pdb file
        coords = load_coords_from_pdb(pdb, atoms=atoms).view(1, -1, 3)
        return _dmap_from_coords(coords)
    elif len(pdb.shape) == 2:  # single set of coords
        if isinstance(pdb, np.ndarray):
            pdb = torch.Tensor(pdb)
        return _dmap_from_coords(pdb.unsqueeze(0))
    elif len(pdb.shape) == 3 and batched:
        return _dmap_from_coords(pdb)
    elif len(pdb.shape) == 3 and not batched:
        return _dmap_from_coords(pdb.view(1, -1, 3))
    elif len(pdb.shape) == 4:
        return _dmap_from_coords(pdb.view(pdb.size(0), -1, 3))


def get_channeled_dmap(coords):
    # coords is b, nres, natom, 3
    coords = coords.permute(0, 2, 1, 3)
    dvecs = coords[..., None, :] - coords[..., None, :, :]  # b, natom, nres, nres, 3
    dists = torch.sqrt(dvecs.pow(2).sum(-1) + 1e-8)
    return dists


def fill_in_cbeta_for_atom37(coords):
    b = coords[..., 1, :] - coords[..., 0, :]
    c = coords[..., 2, :] - coords[..., 1, :]
    a = torch.cross(b, c, dim=-1)
    cbeta = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + coords[..., 1, :]
    new_coords = torch.clone(coords)
    new_coords[..., 3, :] = cbeta
    return new_coords


def get_distogram(coords, n_bins=20, start=2, return_onehot=True, seq_mask=None):
    # coords is b, nres, natom, 3
    # distogram for cb atom (assume 3rd atom)
    coords_with_cb = fill_in_cbeta_for_atom37(coords)
    dists = get_channeled_dmap(coords_with_cb[:, :, 3:4]).squeeze(1)
    bins = torch.arange(start, start + n_bins - 1).to(dists.device)
    dgram = torch.bucketize(dists, bins)
    dgram_oh = F.one_hot(dgram, n_bins)
    if seq_mask is not None:
        mask_2d = seq_mask[:, :, None] * seq_mask[:, None, :]
        dgram = dgram * mask_2d
        dgram_oh = dgram_oh * mask_2d[..., None]

    if return_onehot:
        return dgram_oh
    return dgram


def get_contacts(coords=None, distogram=None, seq_mask=None):
    if distogram is None:
        distogram = get_distogram(coords)
    contacts = (distogram.argmax(-1) < 6).float()
    if seq_mask is not None:
        contacts *= seq_mask[..., None] * seq_mask[..., None, :]
    return contacts


def dihedral(a, b, c, d):
    # inputs can be (1,3), (n,3), or (bs,n,3)
    b1 = a - b
    b2 = b - c
    b3 = c - d
    n1 = F.normalize(torch.cross(b1, b2), dim=-1)
    n2 = F.normalize(torch.cross(b2, b3), dim=-1)
    m1 = torch.cross(n1, b2 / b2.norm(dim=-1).unsqueeze(-1))
    y = (m1 * n2).sum(dim=-1)
    x = (n1 * n2).sum(dim=-1)
    return torch.atan2(y, x)


def get_torsions_from_coords(
    coords, atoms=["N", "CA", "C", "O"], batched=True, out="torch", device=None
):
    """
    Returns a n-dim array of shape (bs, nres, ntors), where ntors is the
    number of torsion angles (e.g. 2 if using phi and psi), with units of radians.
    """
    if isinstance(coords, np.ndarray):
        coords = torch.Tensor(coords)
    if len(coords.shape) == 2:
        coords = coords.unsqueeze(0)
    if len(coords.shape) == 4:
        coords = coords.view(coords.size(0), -1, 3)
    if len(coords.shape) == 3 and not batched:
        coords = coords.view(1, -1, 3)
    if len(coords.shape) == 3:
        bs = coords.size(0)
        if "O" in atoms:
            idxs = [
                i for i in range(coords.size(1)) if i % 4 != 3
            ]  # deselect O atoms for N-Ca-C-O coords
            coords = coords[:, idxs, :]
        a, b, c, d = (
            coords[:, :-3, :],
            coords[:, 1:-2, :],
            coords[:, 2:-1, :],
            coords[:, 3:, :],
        )
        torsions = dihedral(
            a, b, c, d
        )  # output order is psi-omega-phi, reorganize to (bs, nres, 3)
        torsions = torsions.view(bs, torsions.size(1) // 3, 3)
        omegaphi = torch.cat(
            (torch.zeros(bs, 1, 2).to(coords.device), torsions[:, :, 1:]), 1
        )
        psi = torch.cat((torsions[:, :, 0], torch.zeros(bs, 1).to(coords.device)), 1)
        torsions = torch.cat(
            (
                omegaphi[:, :, 1].unsqueeze(-1),
                psi.unsqueeze(-1),
                omegaphi[:, :, 0].unsqueeze(-1),
            ),
            -1,
        )
    else:
        raise Exception("input coords not of correct dims")

    if out == "numpy":
        return torsions.detach().cpu().numpy()
    elif out == "torch":
        if device is not None:
            return torsions.to(device)
        else:
            return torsions


def get_trig_from_torsions(torsions, out="torch", device=None):
    """
    Calculate unit circle projections from coords input.

    Returns a n-dim array of shape (bs, nres, ntors, 2), where ntors is the
    number of torsion angles (e.g. 2 if using phi and psi), and the last
    dimension is the xy unit-circle coordinates of the corresponding angle.
    """
    if isinstance(torsions, np.ndarray):
        torsions = torch.Tensor(torsions)
    x = torsions.cos()
    y = torsions.sin()
    trig = torch.cat((x.unsqueeze(-1), y.unsqueeze(-1)), -1)
    if out == "numpy":
        return trig.detach().cpu().numpy()
    elif out == "torch":
        if device is not None:
            return trig.to(device)
        else:
            return trig


def get_abego_string_from_torsions(torsions):
    A_bin = (-75, 50)
    G_bin = (-100, 100)
    torsions = torsions * 180.0 / np.pi
    phi, psi = torsions[:, :, 0], torsions[:, :, 1]
    abego_vec = np.zeros((torsions.size(0), torsions.size(1))).astype(str)
    A = (phi <= 0) & (psi <= A_bin[1]) & (psi > A_bin[0])
    B = (phi <= 0) & ((psi > A_bin[1]) | (psi <= A_bin[0]))
    G = (phi > 0) & (psi <= G_bin[1]) & (psi > G_bin[0])
    E = (phi > 0) & ((psi > G_bin[1]) | (psi <= G_bin[0]))
    abego_vec[A] = "A"
    abego_vec[B] = "B"
    abego_vec[G] = "G"
    abego_vec[E] = "E"
    abego_strs = ["".join(v) for v in abego_vec]
    return abego_strs


def get_bond_lengths_from_coords(coords, batched=True, out="torch", device=None):
    """
    Returns array of shape (bs, n_res, 4), where final dim is bond lengths
    in order of N-Ca, Ca-C, C-O, C-N (none for last residue)
    """
    if isinstance(coords, np.ndarray):
        coords = torch.Tensor(coords)
    if len(coords.shape) == 2:
        coords = coords.unsqueeze(0)
    if len(coords.shape) == 3 and not batched:
        coords = coords.view(1, -1, 3)
    if len(coords.shape) == 4:
        coords = coords.view(coords.size(0), -1, 3)
    N = coords[:, ::4, :]
    Ca = coords[:, 1::4, :]
    C = coords[:, 2::4, :]
    O = coords[:, 3::4, :]
    NCa = (Ca - N).norm(dim=-1).unsqueeze(-1)
    CaC = (C - Ca).norm(dim=-1).unsqueeze(-1)
    CO = (O - C).norm(dim=-1).unsqueeze(-1)
    CN = (N[:, 1:] - C[:, :-1]).norm(dim=-1)
    CN = torch.cat([CN, torch.zeros(CN.size(0), 1).to(CN.device)], 1).unsqueeze(-1)
    blengths = torch.cat((NCa, CaC, CO, CN), -1)
    if out == "numpy":
        return blengths.detach().cpu().numpy()
    elif out == "torch":
        if device is not None:
            return blengths.to(device)
        else:
            return blengths


def get_bond_angles_from_coords(coords, batched=True, out="torch", device=None):
    """
    Returns array of shape (bs, n_res, 5), where final dim is bond angles
    in order of N-Ca-C, Ca-C-O, Ca-C-N, O-C-N, C-N-Ca (none for last residue)
    """

    def _angle(v1, v2):
        cos = (v1 * v2).sum(-1) / (v1.norm(dim=-1) * v2.norm(dim=-1))
        return cos.acos()

    if isinstance(coords, np.ndarray):
        coords = torch.Tensor(coords)
    if len(coords.shape) == 2:
        coords = coords.unsqueeze(0)
    if len(coords.shape) == 3 and not batched:
        coords = coords.view(1, -1, 3)
    if len(coords.shape) == 4:
        coords = coords.view(coords.size(0), -1, 3)
    N = coords[:, ::4, :]
    Nnext = coords[:, 4::4, :]
    Ca = coords[:, 1::4, :]
    Canext = coords[:, 5::4, :]
    C = coords[:, 2::4, :]
    O = coords[:, 3::4, :]
    CaN = N - Ca
    CaC = C - Ca
    CCa = Ca - C
    CO = O - C
    CNnext = Nnext - C[:, :-1, :]
    NnextC = -1 * CNnext
    NnextCanext = Canext - Nnext
    NCaC = _angle(CaN, CaC).unsqueeze(-1)
    CaCO = _angle(CCa, CO).unsqueeze(-1)
    CaCN = _angle(CCa[:, :-1], CNnext).unsqueeze(-1)
    CaCN = _extend(CaCN)
    OCN = _angle(CO[:, :-1], CNnext).unsqueeze(-1)
    OCN = _extend(OCN)
    CNCa = _angle(NnextC, NnextCanext).unsqueeze(-1)
    # CNCa = torch.cat([CNCa, torch.zeros(CNCa.size(0), 1).to(CNCa.device)], 1).unsqueeze(-1)
    CNCa = _extend(CNCa)
    bangles = torch.cat((NCaC, CaCO, CaCN, OCN, CNCa), -1)
    if out == "numpy":
        return bangles.detach().cpu().numpy()
    elif out == "torch":
        if device is not None:
            return bangles.to(device)
        else:
            return bangles


def get_buried_positions_mask(coords, seq_mask=None, threshold=6.0):
    ca_idx = residue_constants.atom_order["CA"]  # typically 1
    cb_idx = residue_constants.atom_order["CB"]  # typically 3
    if seq_mask is None:
        seq_mask = torch.ones_like(coords)[..., 0, 0]
    coords = fill_in_cbeta_for_atom37(coords)

    # get 8 closest neighbors by CB
    neighbor_coords = coords[:, :, cb_idx]

    ca_neighbor_dists, edge_index = protein_mpnn.get_closest_neighbors(
        neighbor_coords, seq_mask, 9
    )
    edge_index = edge_index[..., 1:].contiguous()

    # compute avg CB distance
    cb_coords = coords[:, :, cb_idx]
    neighbor_cb = protein_mpnn.gather_nodes(cb_coords, edge_index)
    avg_cb_dist = (neighbor_cb - cb_coords[..., None, :]).pow(2).sum(-1).sqrt().mean(-1)

    buried_positions_mask = (avg_cb_dist < threshold).float() * seq_mask
    return buried_positions_mask


def get_fullatom_bond_lengths_from_coords(
    coords, aatype, atom_mask=None, return_format="per_aa"
):
    # Also return sidechain bond angles. All unbatched. return list of dicts
    def dist(xyz1, xyz2):
        return (xyz1 - xyz2).pow(2).sum().sqrt().detach().cpu().item()

    assert aatype.max() <= 19
    seq = aatype_to_seq(aatype)
    # residue-wise list of dicts [{'N-CA': a, 'CA-C': b}, {'N-CA': a, 'CA-C': b}]
    all_bond_lens_by_pos = []
    # aa-wise dict of dicts of lists {'A': {'N-CA': [a, b, c], 'CA-C': [a, b, c]}}
    all_bond_lens_by_aa = {aa: {} for aa in residue_constants.restypes}
    for i, res in enumerate(coords):
        aa3 = residue_constants.restype_1to3[seq[i]]
        res_bond_lens = {}
        for j, atom1 in enumerate(residue_constants.atom_types):
            for k, atom2 in enumerate(residue_constants.atom_types):
                if j < k and protein.are_atoms_bonded(aa3, atom1, atom2):
                    if atom_mask is None or (
                        atom_mask[i, j] > 0.5 and atom_mask[i, k] > 0.5
                    ):
                        bond_name = f"{atom1}-{atom2}"
                        bond_len = dist(res[j], res[k])
                        res_bond_lens[bond_name] = bond_len
        all_bond_lens_by_pos.append(res_bond_lens)
        for key, val in res_bond_lens.items():
            all_bond_lens_by_aa[seq[i]].setdefault(key, []).append(val)

    if return_format == "per_aa":
        return all_bond_lens_by_aa
    elif return_format == "per_position":
        return all_bond_lens_by_pos


def batched_fullatom_bond_lengths_from_coords(
    coords, aatype, atom_mask=None, return_format="per_aa"
):
    # Expects trimmed coords (no mask)
    if return_format == "per_position":
        batched_bond_lens = []
    elif return_format == "per_aa":
        batched_bond_lens = {aa: {} for aa in residue_constants.restypes}
    for i, c in enumerate(coords):
        atom_mask_i = None if atom_mask is None else atom_mask[i]
        bond_lens = get_fullatom_bond_lengths_from_coords(
            c, aatype[i], atom_mask=atom_mask_i, return_format=return_format
        )
        if return_format == "per_position":
            batched_bond_lens.extend(bond_lens)
        elif return_format == "per_aa":
            for aa, d in bond_lens.items():
                for bond, lengths in d.items():
                    batched_bond_lens[aa].setdefault(bond, []).extend(lengths)
    return batched_bond_lens


def batched_fullatom_bond_angles_from_coords(coords, aatype, return_format="per_aa"):
    # Expects trimmed coords (no mask)
    if return_format == "per_position":
        batched_bond_angles = []
    elif return_format == "per_aa":
        batched_bond_angles = {aa: {} for aa in residue_constants.restypes}
    for i, c in enumerate(coords):
        bond_angles = get_fullatom_bond_angles_from_coords(
            c, aatype[i], return_format=return_format
        )
        if return_format == "per_position":
            batched_bond_angles.extend(bond_angles)
        elif return_format == "per_aa":
            for aa, d in bond_angles.items():
                for bond, lengths in d.items():
                    batched_bond_angles[aa].setdefault(bond, []).extend(lengths)
    return batched_bond_angles


def get_chi_angles(coords, aatype, atom_mask=None, seq_mask=None):
    # unbatched
    # return (n, 4) chis in degrees and mask
    chis = []
    chi_mask = []
    atom_order = residue_constants.atom_order

    seq = aatype_to_seq(aatype, seq_mask=seq_mask)

    for i, aa1 in enumerate(seq):  # per residue
        if seq_mask is not None and seq_mask[i] == 0:
            chis.append([0, 0, 0, 0])
            chi_mask.append([0, 0, 0, 0])
        else:
            chi = []
            mask = []
            chi_atoms = residue_constants.chi_angles_atoms[
                residue_constants.restype_1to3[aa1]
            ]
            for j in range(4):  # per chi angle
                if j > len(chi_atoms) - 1:
                    chi.append(0)
                    mask.append(0)
                elif atom_mask is not None and any(
                    [atom_mask[i, atom_order[a]] < 0.5 for a in chi_atoms[j]]
                ):
                    chi.append(0)
                    mask.append(0)
                else:
                    # Four atoms per dihedral
                    xyz4 = [coords[i, atom_order[a]] for a in chi_atoms[j]]
                    angle = dihedral(*xyz4) * 180 / np.pi
                    chi.append(angle)
                    mask.append(1)
            chis.append(chi)
            chi_mask.append(mask)

    chis = torch.Tensor(chis)
    chi_mask = torch.Tensor(chi_mask)

    return chis, chi_mask


def fill_Os_from_NCaC_coords(
    coords: torch.Tensor, out: str = "torch", device: str = None
):
    """Given NCaC coords, add O atom coordinates in.
    (bs, 3n, 3) -> (bs, 4n, 3)
    """
    CO_LEN = 1.231
    if len(coords.shape) == 2:
        coords = coords.unsqueeze(0)
    Cs = coords[:, 2:-1:3, :]  # all but last C
    CCa_norm = F.normalize(coords[:, 1:-2:3, :] - Cs, dim=-1)  # all but last Ca
    CN_norm = F.normalize(coords[:, 3::3, :] - Cs, dim=-1)  # all but first N
    Os = F.normalize(CCa_norm + CN_norm, dim=-1) * -CO_LEN
    Os += Cs
    # TODO place C-term O atom properly
    Os = torch.cat([Os, coords[:, -1, :].view(-1, 1, 3) + 1], 1)
    coords_out = []
    for i in range(Os.size(1)):
        coords_out.append(coords[:, i * 3 : (i + 1) * 3, :])
        coords_out.append(Os[:, i, :].view(-1, 1, 3))
    coords_out = torch.cat(coords_out, 1)
    if out == "numpy":
        return coords_out.detach().cpu().numpy()
    elif out == "torch":
        if device is not None:
            return coords_out.to(device)
        else:
            return coords_out


def _extend(x, axis=1, n=1, prepend=False):
    # Add an extra zeros 'residue' to the end (or beginning, prepend=True) of a Tensor
    # Used to extend torsions when there is no 'psi' for last residue
    shape = list(x.shape)
    shape[axis] = n
    if prepend:
        return torch.cat([torch.zeros(shape).to(x.device), x], axis)
    else:
        return torch.cat([x, torch.zeros(shape).to(x.device)], axis)


def trim_coords(coords, n_res, batched=True):
    if batched:  # Return list of tensors
        front = (coords.shape[1] - n_res) // 2
        return [
            coords[i, front[i] : front[i] + n_res[i]] for i in range(coords.shape[0])
        ]
    else:
        if isinstance(n_res, torch.Tensor):
            n_res = n_res.int()
        front_pad = (coords.shape[0] - n_res) // 2
        return coords[front_pad : front_pad + n_res]


def batch_align_on_calpha(x, y):
    aligned_x = []
    for i, xi in enumerate(x):
        xi_calpha = xi[:, 1, :]
        _, (R, t) = kabsch_align(xi_calpha, y[i, :, 1, :])
        xi_ctr = xi - xi_calpha.mean(0, keepdim=True)
        xi_aligned = xi_ctr @ R.t() + t
        aligned_x.append(xi_aligned)
    return torch.stack(aligned_x)


def kabsch_align(p, q):
    if len(p.shape) > 2:
        p = p.reshape(-1, 3)
    if len(q.shape) > 2:
        q = q.reshape(-1, 3)
    p_ctr = p - p.mean(0, keepdim=True)
    t = q.mean(0, keepdim=True)
    q_ctr = q - t
    H = p_ctr.t() @ q_ctr
    U, S, V = torch.svd(H)
    R = V @ U.t()
    I_ = torch.eye(3).to(p)
    I_[-1, -1] = R.det().sign()
    R = V @ I_ @ U.t()
    p_aligned = p_ctr @ R.t() + t
    return p_aligned, (R, t)


def get_dssp_string(pdb):
    try:
        structure = Bio.PDB.PDBParser(QUIET=True).get_structure(pdb[:-3], pdb)
        dssp = DSSP(structure[0], pdb, dssp="mkdssp")
        dssp_string = "".join([dssp[k][2] for k in dssp.keys()])
        return dssp_string
    except Exception as e:
        print(e)
        return None


def pool_dssp_symbols(dssp_string, newchar=None, chars=["-", "T", "S", "C", " "]):
    """Replaces all instances of chars with newchar. DSSP chars are helix=GHI, strand=EB, loop=- TSC"""
    if newchar is None:
        newchar = chars[0]
    string_out = dssp_string
    for c in chars:
        string_out = string_out.replace(c, newchar)
    return string_out


def get_3state_dssp(pdb=None, coords=None):
    if coords is not None:
        pdb = "temp_dssp.pdb"
        write_coords_to_pdb(coords, pdb, batched=False)
    dssp_string = get_dssp_string(pdb)
    if dssp_string is not None:
        dssp_string = pool_dssp_symbols(dssp_string, newchar="L")
        dssp_string = pool_dssp_symbols(dssp_string, chars=["H", "G", "I"])
        dssp_string = pool_dssp_symbols(dssp_string, chars=["E", "B"])
    if coords is not None:
        subprocess.run(shlex.split(f"rm {pdb}"))
    return dssp_string


############## SAVE/LOAD UTILS #################################


def load_feats_from_pdb(
    pdb, bb_atoms=["N", "CA", "C", "O"], load_atom73=False, **kwargs
):
    feats = {}
    with open(pdb, "r") as f:
        pdb_str = f.read()
    protein_obj = protein.from_pdb_string(pdb_str, **kwargs)
    bb_idxs = [residue_constants.atom_order[a] for a in bb_atoms]
    bb_coords = torch.from_numpy(protein_obj.atom_positions[:, bb_idxs])
    feats["bb_coords"] = bb_coords.float()
    for k, v in vars(protein_obj).items():
        feats[k] = torch.Tensor(v)
    feats["aatype"] = feats["aatype"].long()
    if load_atom73:
        feats["atom73_coords"], feats["atom73_mask"] = atom37_to_atom73(
            feats["atom_positions"], feats["aatype"], return_mask=True
        )
    return feats


def load_coords_from_pdb(
    pdb,
    atoms=["N", "CA", "C", "O"],
    method="raw",
    also_bfactors=False,
    normalize_bfactors=True,
):
    """Returns array of shape (1, n_res, len(atoms), 3)"""
    coords = []
    bfactors = []
    if method == "raw":  # Raw numpy implementation, faster than biopdb
        # Indexing into PDB format, allowing XXXX.XXX
        coords_in_pdb = [slice(30, 38), slice(38, 46), slice(46, 54)]
        # Indexing into PDB format, allowing XXX.XX
        bfactor_in_pdb = slice(60, 66)

        with open(pdb, "r") as f:
            resi_prev = 1
            counter = 0
            for l in f:
                l_split = l.rstrip("\n").split()
                if len(l_split) > 0 and l_split[0] == "ATOM" and l_split[2] in atoms:
                    resi = l_split[5]
                    if resi == resi_prev:
                        counter += 1
                    else:
                        counter = 0
                    if counter < len(atoms):
                        xyz = [
                            np.array(l[s].strip()).astype(float) for s in coords_in_pdb
                        ]
                        coords.append(xyz)
                        if also_bfactors:
                            bfactor = np.array(l[bfactor_in_pdb].strip()).astype(float)
                            bfactors.append(bfactor)
                    resi_prev = resi
            coords = torch.Tensor(np.array(coords)).view(1, -1, len(atoms), 3)
            if also_bfactors:
                bfactors = torch.Tensor(np.array(bfactors)).view(1, -1, len(atoms))
    elif method == "biopdb":
        structure = Bio.PDB.PDBParser(QUIET=True).get_structure(pdb[:-3], pdb)
        for model in structure:
            for chain in model:
                for res in chain:
                    for atom in atoms:
                        try:
                            coords.append(np.asarray(res[atom].get_coord()))
                            if also_bfactors:
                                bfactors.append(np.asarray(res[atom].get_bfactor()))
                        except:
                            continue
    else:
        raise NotImplementedError(f"Invalid method for reading coords: {method}")
    if also_bfactors:
        if normalize_bfactors:  # Normalize over Calphas
            mean_b = bfactors[..., 1].mean()
            std_b = bfactors[..., 1].var().sqrt()
            bfactors = (bfactors - mean_b) / (std_b + 1e-6)
        return coords, bfactors
    return coords


def feats_to_pdb_str(
    atom_positions,
    aatype=None,
    atom_mask=None,
    residue_index=None,
    chain_index=None,
    b_factors=None,
    atom_lines_only=True,
    conect=False,
    **kwargs,
):
    # Expects unbatched, cropped inputs. needs at least one of atom_mask, aatype
    # Uses all-GLY aatype if aatype not given: does not infer from atom_mask
    assert aatype is not None or atom_mask is not None
    if atom_mask is None:
        aatype = aatype.cpu()
        atom_mask = atom37_mask_from_aatype(aatype, torch.ones_like(aatype))
    if aatype is None:
        seq_mask = atom_mask[:, residue_constants.atom_order["CA"]].cpu()
        aatype = seq_mask * residue_constants.restype_order["G"]
    if residue_index is None:
        residue_index = torch.arange(aatype.shape[-1])
    if chain_index is None:
        chain_index = torch.ones_like(aatype)
    if b_factors is None:
        b_factors = torch.ones_like(atom_mask)

    cast = lambda x: np.array(x.detach().cpu()) if isinstance(x, torch.Tensor) else x
    prot = protein.Protein(
        atom_positions=cast(atom_positions),
        atom_mask=cast(atom_mask),
        aatype=cast(aatype),
        residue_index=cast(residue_index),
        chain_index=cast(chain_index),
        b_factors=cast(b_factors),
    )
    pdb_str = protein.to_pdb(prot, conect=conect)
    if conect:
        pdb_str, conect_str = pdb_str
    if atom_lines_only:
        pdb_lines = pdb_str.split("\n")
        atom_lines = [
            l for l in pdb_lines if len(l.split()) > 1 and l.split()[0] == "ATOM"
        ]
        pdb_str = "\n".join(atom_lines) + "\n"
    if conect:
        pdb_str = pdb_str + conect_str
    return pdb_str


def bb_coords_to_pdb_str(coords, atoms=["N", "CA", "C", "O"]):
    def _bb_pdb_line(atom, atomnum, resnum, coords, elem, res="GLY"):
        atm = "ATOM".ljust(6)
        atomnum = str(atomnum).rjust(5)
        atomname = atom.center(4)
        resname = res.ljust(3)
        chain = "A".rjust(1)
        resnum = str(resnum).rjust(4)
        x = str("%8.3f" % (float(coords[0]))).rjust(8)
        y = str("%8.3f" % (float(coords[1]))).rjust(8)
        z = str("%8.3f" % (float(coords[2]))).rjust(8)
        occ = str("%6.2f" % (float(1))).rjust(6)
        temp = str("%6.2f" % (float(20))).ljust(6)
        elname = elem.rjust(12)
        return "%s%s %s %s %s%s    %s%s%s%s%s%s\n" % (
            atm,
            atomnum,
            atomname,
            resname,
            chain,
            resnum,
            x,
            y,
            z,
            occ,
            temp,
            elname,
        )

    n = coords.shape[0]
    na = len(atoms)
    pdb_str = ""
    for j in range(0, n, na):
        for idx, atom in enumerate(atoms):
            pdb_str += _bb_pdb_line(
                atom,
                j + idx + 1,
                (j + na) // na,
                coords[j + idx],
                atom[0],
            )
    return pdb_str


def write_coords_to_pdb(
    coords_in,
    filename,
    batched=True,
    write_to_frames=False,
    conect=False,
    **all_atom_feats,
):
    def _write_pdb_string(pdb_str, filename, append=False):
        write_mode = "a" if append else "w"
        with open(filename, write_mode) as f:
            if write_to_frames:
                f.write("MODEL\n")
            f.write(pdb_str)
            if write_to_frames:
                f.write("ENDMDL\n")

    if not (batched or write_to_frames):
        coords_in = [coords_in]
        filename = [filename]
        all_atom_feats = {k: [v] for k, v in all_atom_feats.items()}

    n_atoms_in = coords_in[0].shape[-2]
    is_bb_or_ca_pdb = n_atoms_in <= 4
    for i, c in enumerate(coords_in):
        n_res = c.shape[0]
        if isinstance(filename, list):
            fname = filename[i]
        elif write_to_frames or len(coords_in) == 1:
            fname = filename
        else:
            fname = f"{filename[:-4]}_{i}.pdb"

        if is_bb_or_ca_pdb:
            c_flat = rearrange(c, "n a c -> (n a) c")
            if n_atoms_in == 1:
                atoms = ["CA"]
            if n_atoms_in == 3:
                atoms = ["N", "CA", "C"]
            if n_atoms_in == 4:
                atoms = ["N", "CA", "C", "O"]
            pdb_str = bb_coords_to_pdb_str(c_flat, atoms)
        else:
            feats_i = {k: v[i][:n_res] for k, v in all_atom_feats.items()}
            pdb_str = feats_to_pdb_str(c, conect=conect, **feats_i)
        _write_pdb_string(pdb_str, fname, append=write_to_frames and i > 0)


###################### LOSSES ###################################


def masked_cross_entropy(logprobs, target, loss_mask):
    # target is onehot
    cel = -(target * logprobs)
    cel = cel * loss_mask[..., None]
    cel = cel.sum((-1, -2)) / loss_mask.sum(-1).clamp(min=1e-6)
    return cel


def masked_mse(x, y, mask, weight=None):
    data_dims = tuple(range(1, len(x.shape)))
    mse = (x - y).pow(2) * mask
    if weight is not None:
        mse = mse * expand(weight, mse)
    mse = mse.sum(data_dims) / mask.sum(data_dims).clamp(min=1e-6)
    return mse


###################### ALIGN ###################################


def quick_tmalign(
    p, p_sele, q_sele, tmscore_type="avg", differentiable_rmsd=False, rmsd_type="ca"
):
    # sota 210712
    write_coords_to_pdb(p_sele[:, 1:2], "temp_p.pdb", atoms=["CA"], batched=False)
    write_coords_to_pdb(q_sele[:, 1:2], "temp_q.pdb", atoms=["CA"], batched=False)
    cmd = f"{PATH_TO_TMALIGN} temp_p.pdb temp_q.pdb -m temp_matrix.txt"
    outputs = subprocess.run(shlex.split(cmd), capture_output=True, text=True)

    # Get RMSD and TM scores
    tmout = outputs.stdout.split("\n")
    rmsd = float(tmout[16].split()[4][:-1])
    tmscore1 = float(tmout[17].split()[1])
    tmscore2 = float(tmout[18].split()[1])
    if tmscore_type == "avg":
        tmscore = (tmscore1 + tmscore2) / 2
    elif tmscore_type == "1" or tmscore_type == "query":
        tmscore = tmscore1
    elif tmscore_type == "2":
        tmscore = tmscore2
    elif tmscore_type == "both":
        tmscore = (tmscore1, tmscore2)

    # Get R, t and transform p coords
    m = open("temp_matrix.txt", "r").readlines()[2:5]
    m = [l.strip()[1:].strip() for l in m]
    m = torch.Tensor([[float(i) for i in l.split()] for l in m]).to(p_sele.device)
    R = m[:, 1:].t()
    t = m[:, 0]
    aligned_psele = p_sele @ R + t
    aligned = p @ R + t

    # Option 2 for rms - MSE of aligned against target coords using TMalign seq alignment. Differentiable
    if differentiable_rmsd:
        pi, qi = 0, 0
        p_idxs, q_idxs = [], []
        for i, c in enumerate(tmout[23]):
            if c in [":", "."]:
                p_idxs.append(pi)
                q_idxs.append(qi)
            if tmout[22][i] != "-":
                pi += 1
            if tmout[24][i] != "-":
                qi += 1
        tmalign_seq_p = p_sele[p_idxs]
        tmalign_seq_q = q_sele[q_idxs]
        if rmsd_type == "ca":
            tmalign_seq_p = tmalign_seq_p[:, 1]
            tmalign_seq_q = tmalign_seq_q[:, 1]
        elif rmsd_type == "bb":
            pass
        rmsd = (tmalign_seq_p - tmalign_seq_q).pow(2).sum(-1).sqrt().mean()

    # Delete temp files: p.pdb, q.pdb, matrix.txt, tmalign.out
    subprocess.run(shlex.split("rm temp_p.pdb"))
    subprocess.run(shlex.split("rm temp_q.pdb"))
    subprocess.run(shlex.split("rm temp_matrix.txt"))

    return {"aligned": aligned, "rmsd": rmsd, "tm_score": tmscore, "R": R, "t": t}


###################### OTHER ###################################


def expand(x, tgt=None, dim=1):
    if tgt is None:
        for _ in range(dim):
            x = x[..., None]
    else:
        while len(x.shape) < len(tgt.shape):
            x = x[..., None]
    return x


def hookfn(name, verbose=False):
    def f(grad):
        if check_nan_inf(grad) > 0:
            print(name, "grad nan/infs", grad.shape, check_nan_inf(grad), grad)
        if verbose:
            print(name, "grad shape", grad.shape, "norm", grad.norm())

    return f


def trigger_nan_check(name, x):
    if check_nan_inf(x) > 0:
        print(name, check_nan_inf(x))
        raise Exception


def check_nan_inf(x):
    return torch.isinf(x).sum() + torch.isnan(x).sum()


def directory_find(atom, root="."):
    for path, dirs, files in os.walk(root):
        if atom in dirs:
            return os.path.join(path, atom)


def dict2namespace(config):
    namespace = argparse.Namespace()
    for key, value in config.items():
        if isinstance(value, dict):
            new_value = dict2namespace(value)
        else:
            new_value = value
        setattr(namespace, key, new_value)
    return namespace


def load_config(path, return_dict=False):
    with open(path, "r") as f:
        config_dict = yaml.safe_load(f)
    config = dict2namespace(config_dict)
    if return_dict:
        return config, config_dict
    else:
        return config