Spaces:
Sleeping
Sleeping
File size: 12,363 Bytes
00aa807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import torch
from torch.utils.data import DataLoader
import csv
from dateutil import parser
import numpy as np
import time
import random
import os
class StructureDataset():
def __init__(self, pdb_dict_list, verbose=True, truncate=None, max_length=100,
alphabet='ACDEFGHIKLMNPQRSTVWYX'):
alphabet_set = set([a for a in alphabet])
discard_count = {
'bad_chars': 0,
'too_long': 0,
'bad_seq_length': 0
}
self.data = []
start = time.time()
for i, entry in enumerate(pdb_dict_list):
seq = entry['seq']
name = entry['name']
bad_chars = set([s for s in seq]).difference(alphabet_set)
if len(bad_chars) == 0:
if len(entry['seq']) <= max_length:
self.data.append(entry)
else:
discard_count['too_long'] += 1
else:
#print(name, bad_chars, entry['seq'])
discard_count['bad_chars'] += 1
# Truncate early
if truncate is not None and len(self.data) == truncate:
return
if verbose and (i + 1) % 1000 == 0:
elapsed = time.time() - start
#print('{} entries ({} loaded) in {:.1f} s'.format(len(self.data), i+1, elapsed))
#print('Discarded', discard_count)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class StructureLoader():
def __init__(self, dataset, batch_size=100, shuffle=True,
collate_fn=lambda x:x, drop_last=False):
self.dataset = dataset
self.size = len(dataset)
self.lengths = [len(dataset[i]['seq']) for i in range(self.size)]
self.batch_size = batch_size
sorted_ix = np.argsort(self.lengths)
# Cluster into batches of similar sizes
clusters, batch = [], []
batch_max = 0
for ix in sorted_ix:
size = self.lengths[ix]
if size * (len(batch) + 1) <= self.batch_size:
batch.append(ix)
batch_max = size
else:
clusters.append(batch)
batch, batch_max = [], 0
if len(batch) > 0:
clusters.append(batch)
self.clusters = clusters
def __len__(self):
return len(self.clusters)
def __iter__(self):
np.random.shuffle(self.clusters)
for b_idx in self.clusters:
batch = [self.dataset[i] for i in b_idx]
yield batch
def worker_init_fn(worker_id):
np.random.seed()
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer, step):
self.optimizer = optimizer
self._step = step
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
@property
def param_groups(self):
"""Return param_groups."""
return self.optimizer.param_groups
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def zero_grad(self):
self.optimizer.zero_grad()
def get_std_opt(parameters, d_model, step):
return NoamOpt(
d_model, 2, 4000, torch.optim.Adam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9), step
)
def get_pdbs(data_loader, repeat=1, max_length=10000, num_units=1000000):
init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
extra_alphabet = [str(item) for item in list(np.arange(300))]
chain_alphabet = init_alphabet + extra_alphabet
c = 0
c1 = 0
pdb_dict_list = []
t0 = time.time()
for _ in range(repeat):
for step,t in enumerate(data_loader):
t = {k:v[0] for k,v in t.items()}
c1 += 1
if 'label' in list(t):
my_dict = {}
s = 0
concat_seq = ''
concat_N = []
concat_CA = []
concat_C = []
concat_O = []
concat_mask = []
coords_dict = {}
mask_list = []
visible_list = []
if len(list(np.unique(t['idx']))) < 352:
for idx in list(np.unique(t['idx'])):
letter = chain_alphabet[idx]
res = np.argwhere(t['idx']==idx)
initial_sequence= "".join(list(np.array(list(t['seq']))[res][0,]))
if initial_sequence[-6:] == "HHHHHH":
res = res[:,:-6]
if initial_sequence[0:6] == "HHHHHH":
res = res[:,6:]
if initial_sequence[-7:-1] == "HHHHHH":
res = res[:,:-7]
if initial_sequence[-8:-2] == "HHHHHH":
res = res[:,:-8]
if initial_sequence[-9:-3] == "HHHHHH":
res = res[:,:-9]
if initial_sequence[-10:-4] == "HHHHHH":
res = res[:,:-10]
if initial_sequence[1:7] == "HHHHHH":
res = res[:,7:]
if initial_sequence[2:8] == "HHHHHH":
res = res[:,8:]
if initial_sequence[3:9] == "HHHHHH":
res = res[:,9:]
if initial_sequence[4:10] == "HHHHHH":
res = res[:,10:]
if res.shape[1] < 4:
pass
else:
my_dict['seq_chain_'+letter]= "".join(list(np.array(list(t['seq']))[res][0,]))
concat_seq += my_dict['seq_chain_'+letter]
if idx in t['masked']:
mask_list.append(letter)
else:
visible_list.append(letter)
coords_dict_chain = {}
all_atoms = np.array(t['xyz'][res,])[0,] #[L, 14, 3]
coords_dict_chain['N_chain_'+letter]=all_atoms[:,0,:].tolist()
coords_dict_chain['CA_chain_'+letter]=all_atoms[:,1,:].tolist()
coords_dict_chain['C_chain_'+letter]=all_atoms[:,2,:].tolist()
coords_dict_chain['O_chain_'+letter]=all_atoms[:,3,:].tolist()
my_dict['coords_chain_'+letter]=coords_dict_chain
my_dict['name']= t['label']
my_dict['masked_list']= mask_list
my_dict['visible_list']= visible_list
my_dict['num_of_chains'] = len(mask_list) + len(visible_list)
my_dict['seq'] = concat_seq
if len(concat_seq) <= max_length:
pdb_dict_list.append(my_dict)
if len(pdb_dict_list) >= num_units:
break
return pdb_dict_list
class PDB_dataset(torch.utils.data.Dataset):
def __init__(self, IDs, loader, train_dict, params):
self.IDs = IDs
self.train_dict = train_dict
self.loader = loader
self.params = params
def __len__(self):
return len(self.IDs)
def __getitem__(self, index):
ID = self.IDs[index]
sel_idx = np.random.randint(0, len(self.train_dict[ID]))
out = self.loader(self.train_dict[ID][sel_idx], self.params)
return out
def loader_pdb(item,params):
pdbid,chid = item[0].split('_')
PREFIX = "%s/pdb/%s/%s"%(params['DIR'],pdbid[1:3],pdbid)
# load metadata
if not os.path.isfile(PREFIX+".pt"):
return {'seq': np.zeros(5)}
meta = torch.load(PREFIX+".pt")
asmb_ids = meta['asmb_ids']
asmb_chains = meta['asmb_chains']
chids = np.array(meta['chains'])
# find candidate assemblies which contain chid chain
asmb_candidates = set([a for a,b in zip(asmb_ids,asmb_chains)
if chid in b.split(',')])
# if the chains is missing is missing from all the assemblies
# then return this chain alone
if len(asmb_candidates)<1:
chain = torch.load("%s_%s.pt"%(PREFIX,chid))
L = len(chain['seq'])
return {'seq' : chain['seq'],
'xyz' : chain['xyz'],
'idx' : torch.zeros(L).int(),
'masked' : torch.Tensor([0]).int(),
'label' : item[0]}
# randomly pick one assembly from candidates
asmb_i = random.sample(list(asmb_candidates), 1)
# indices of selected transforms
idx = np.where(np.array(asmb_ids)==asmb_i)[0]
# load relevant chains
chains = {c:torch.load("%s_%s.pt"%(PREFIX,c))
for i in idx for c in asmb_chains[i]
if c in meta['chains']}
# generate assembly
asmb = {}
for k in idx:
# pick k-th xform
xform = meta['asmb_xform%d'%k]
u = xform[:,:3,:3]
r = xform[:,:3,3]
# select chains which k-th xform should be applied to
s1 = set(meta['chains'])
s2 = set(asmb_chains[k].split(','))
chains_k = s1&s2
# transform selected chains
for c in chains_k:
try:
xyz = chains[c]['xyz']
xyz_ru = torch.einsum('bij,raj->brai', u, xyz) + r[:,None,None,:]
asmb.update({(c,k,i):xyz_i for i,xyz_i in enumerate(xyz_ru)})
except KeyError:
return {'seq': np.zeros(5)}
# select chains which share considerable similarity to chid
seqid = meta['tm'][chids==chid][0,:,1]
homo = set([ch_j for seqid_j,ch_j in zip(seqid,chids)
if seqid_j>params['HOMO']])
# stack all chains in the assembly together
seq,xyz,idx,masked = "",[],[],[]
seq_list = []
for counter,(k,v) in enumerate(asmb.items()):
seq += chains[k[0]]['seq']
seq_list.append(chains[k[0]]['seq'])
xyz.append(v)
idx.append(torch.full((v.shape[0],),counter))
if k[0] in homo:
masked.append(counter)
return {'seq' : seq,
'xyz' : torch.cat(xyz,dim=0),
'idx' : torch.cat(idx,dim=0),
'masked' : torch.Tensor(masked).int(),
'label' : item[0]}
def build_training_clusters(params, debug):
val_ids = set([int(l) for l in open(params['VAL']).readlines()])
test_ids = set([int(l) for l in open(params['TEST']).readlines()])
if debug:
val_ids = []
test_ids = []
# read & clean list.csv
with open(params['LIST'], 'r') as f:
reader = csv.reader(f)
next(reader)
rows = [[r[0],r[3],int(r[4])] for r in reader
if float(r[2])<=params['RESCUT'] and
parser.parse(r[1])<=parser.parse(params['DATCUT'])]
# compile training and validation sets
train = {}
valid = {}
test = {}
if debug:
rows = rows[:20]
for r in rows:
if r[2] in val_ids:
if r[2] in valid.keys():
valid[r[2]].append(r[:2])
else:
valid[r[2]] = [r[:2]]
elif r[2] in test_ids:
if r[2] in test.keys():
test[r[2]].append(r[:2])
else:
test[r[2]] = [r[:2]]
else:
if r[2] in train.keys():
train[r[2]].append(r[:2])
else:
train[r[2]] = [r[:2]]
if debug:
valid=train
return train, valid, test
|