File size: 12,363 Bytes
00aa807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import torch
from torch.utils.data import DataLoader
import csv
from dateutil import parser
import numpy as np
import time
import random
import os

class StructureDataset():
    def __init__(self, pdb_dict_list, verbose=True, truncate=None, max_length=100,
        alphabet='ACDEFGHIKLMNPQRSTVWYX'):
        alphabet_set = set([a for a in alphabet])
        discard_count = {
            'bad_chars': 0,
            'too_long': 0,
            'bad_seq_length': 0
        }

        self.data = []

        start = time.time()
        for i, entry in enumerate(pdb_dict_list):
            seq = entry['seq']
            name = entry['name']

            bad_chars = set([s for s in seq]).difference(alphabet_set)
            if len(bad_chars) == 0:
                if len(entry['seq']) <= max_length:
                    self.data.append(entry)
                else:
                    discard_count['too_long'] += 1
            else:
                #print(name, bad_chars, entry['seq'])
                discard_count['bad_chars'] += 1

            # Truncate early
            if truncate is not None and len(self.data) == truncate:
                return

            if verbose and (i + 1) % 1000 == 0:
                elapsed = time.time() - start
                #print('{} entries ({} loaded) in {:.1f} s'.format(len(self.data), i+1, elapsed))

            #print('Discarded', discard_count)
    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


class StructureLoader():
    def __init__(self, dataset, batch_size=100, shuffle=True,
        collate_fn=lambda x:x, drop_last=False):
        self.dataset = dataset
        self.size = len(dataset)
        self.lengths = [len(dataset[i]['seq']) for i in range(self.size)]
        self.batch_size = batch_size
        sorted_ix = np.argsort(self.lengths)

        # Cluster into batches of similar sizes
        clusters, batch = [], []
        batch_max = 0
        for ix in sorted_ix:
            size = self.lengths[ix]
            if size * (len(batch) + 1) <= self.batch_size:
                batch.append(ix)
                batch_max = size
            else:
                clusters.append(batch)
                batch, batch_max = [], 0
        if len(batch) > 0:
            clusters.append(batch)
        self.clusters = clusters

    def __len__(self):
        return len(self.clusters)

    def __iter__(self):
        np.random.shuffle(self.clusters)
        for b_idx in self.clusters:
            batch = [self.dataset[i] for i in b_idx]
            yield batch


def worker_init_fn(worker_id):
    np.random.seed()

class NoamOpt:
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer, step):
        self.optimizer = optimizer
        self._step = step
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0

    @property
    def param_groups(self):
        """Return param_groups."""
        return self.optimizer.param_groups

    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()

    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))

    def zero_grad(self):
        self.optimizer.zero_grad()

def get_std_opt(parameters, d_model, step):
    return NoamOpt(
        d_model, 2, 4000, torch.optim.Adam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9), step
    )




def get_pdbs(data_loader, repeat=1, max_length=10000, num_units=1000000):
    init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
    extra_alphabet = [str(item) for item in list(np.arange(300))]
    chain_alphabet = init_alphabet + extra_alphabet
    c = 0
    c1 = 0
    pdb_dict_list = []
    t0 = time.time()
    for _ in range(repeat):
        for step,t in enumerate(data_loader):
            t = {k:v[0] for k,v in t.items()}
            c1 += 1
            if 'label' in list(t):
                my_dict = {}
                s = 0
                concat_seq = ''
                concat_N = []
                concat_CA = []
                concat_C = []
                concat_O = []
                concat_mask = []
                coords_dict = {}
                mask_list = []
                visible_list = []
                if len(list(np.unique(t['idx']))) < 352:
                    for idx in list(np.unique(t['idx'])):
                        letter = chain_alphabet[idx]
                        res = np.argwhere(t['idx']==idx)
                        initial_sequence= "".join(list(np.array(list(t['seq']))[res][0,]))
                        if initial_sequence[-6:] == "HHHHHH":
                            res = res[:,:-6]
                        if initial_sequence[0:6] == "HHHHHH":
                            res = res[:,6:]
                        if initial_sequence[-7:-1] == "HHHHHH":
                           res = res[:,:-7]
                        if initial_sequence[-8:-2] == "HHHHHH":
                           res = res[:,:-8]
                        if initial_sequence[-9:-3] == "HHHHHH":
                           res = res[:,:-9]
                        if initial_sequence[-10:-4] == "HHHHHH":
                           res = res[:,:-10]
                        if initial_sequence[1:7] == "HHHHHH":
                            res = res[:,7:]
                        if initial_sequence[2:8] == "HHHHHH":
                            res = res[:,8:]
                        if initial_sequence[3:9] == "HHHHHH":
                            res = res[:,9:]
                        if initial_sequence[4:10] == "HHHHHH":
                            res = res[:,10:]
                        if res.shape[1] < 4:
                            pass
                        else:
                            my_dict['seq_chain_'+letter]= "".join(list(np.array(list(t['seq']))[res][0,]))
                            concat_seq += my_dict['seq_chain_'+letter]
                            if idx in t['masked']:
                                mask_list.append(letter)
                            else:
                                visible_list.append(letter)
                            coords_dict_chain = {}
                            all_atoms = np.array(t['xyz'][res,])[0,] #[L, 14, 3]
                            coords_dict_chain['N_chain_'+letter]=all_atoms[:,0,:].tolist()
                            coords_dict_chain['CA_chain_'+letter]=all_atoms[:,1,:].tolist()
                            coords_dict_chain['C_chain_'+letter]=all_atoms[:,2,:].tolist()
                            coords_dict_chain['O_chain_'+letter]=all_atoms[:,3,:].tolist()
                            my_dict['coords_chain_'+letter]=coords_dict_chain
                    my_dict['name']= t['label']
                    my_dict['masked_list']= mask_list
                    my_dict['visible_list']= visible_list
                    my_dict['num_of_chains'] = len(mask_list) + len(visible_list)
                    my_dict['seq'] = concat_seq
                    if len(concat_seq) <= max_length:
                        pdb_dict_list.append(my_dict)
                    if len(pdb_dict_list) >= num_units:
                        break
    return pdb_dict_list



class PDB_dataset(torch.utils.data.Dataset):
    def __init__(self, IDs, loader, train_dict, params):
        self.IDs = IDs
        self.train_dict = train_dict
        self.loader = loader
        self.params = params

    def __len__(self):
        return len(self.IDs)

    def __getitem__(self, index):
        ID = self.IDs[index]
        sel_idx = np.random.randint(0, len(self.train_dict[ID]))
        out = self.loader(self.train_dict[ID][sel_idx], self.params)
        return out



def loader_pdb(item,params):

    pdbid,chid = item[0].split('_')
    PREFIX = "%s/pdb/%s/%s"%(params['DIR'],pdbid[1:3],pdbid)
    
    # load metadata
    if not os.path.isfile(PREFIX+".pt"):
        return {'seq': np.zeros(5)}
    meta = torch.load(PREFIX+".pt")
    asmb_ids = meta['asmb_ids']
    asmb_chains = meta['asmb_chains']
    chids = np.array(meta['chains'])

    # find candidate assemblies which contain chid chain
    asmb_candidates = set([a for a,b in zip(asmb_ids,asmb_chains)
                           if chid in b.split(',')])

    # if the chains is missing is missing from all the assemblies
    # then return this chain alone
    if len(asmb_candidates)<1:
        chain = torch.load("%s_%s.pt"%(PREFIX,chid))
        L = len(chain['seq'])
        return {'seq'    : chain['seq'],
                'xyz'    : chain['xyz'],
                'idx'    : torch.zeros(L).int(),
                'masked' : torch.Tensor([0]).int(),
                'label'  : item[0]}

    # randomly pick one assembly from candidates
    asmb_i = random.sample(list(asmb_candidates), 1)

    # indices of selected transforms
    idx = np.where(np.array(asmb_ids)==asmb_i)[0]

    # load relevant chains
    chains = {c:torch.load("%s_%s.pt"%(PREFIX,c))
              for i in idx for c in asmb_chains[i]
              if c in meta['chains']}

    # generate assembly
    asmb = {}
    for k in idx:

        # pick k-th xform
        xform = meta['asmb_xform%d'%k]
        u = xform[:,:3,:3]
        r = xform[:,:3,3]

        # select chains which k-th xform should be applied to
        s1 = set(meta['chains'])
        s2 = set(asmb_chains[k].split(','))
        chains_k = s1&s2

        # transform selected chains 
        for c in chains_k:
            try:
                xyz = chains[c]['xyz']
                xyz_ru = torch.einsum('bij,raj->brai', u, xyz) + r[:,None,None,:]
                asmb.update({(c,k,i):xyz_i for i,xyz_i in enumerate(xyz_ru)})
            except KeyError:
                return {'seq': np.zeros(5)}

    # select chains which share considerable similarity to chid
    seqid = meta['tm'][chids==chid][0,:,1]
    homo = set([ch_j for seqid_j,ch_j in zip(seqid,chids)
                if seqid_j>params['HOMO']])
    # stack all chains in the assembly together
    seq,xyz,idx,masked = "",[],[],[]
    seq_list = []
    for counter,(k,v) in enumerate(asmb.items()):
        seq += chains[k[0]]['seq']
        seq_list.append(chains[k[0]]['seq'])
        xyz.append(v)
        idx.append(torch.full((v.shape[0],),counter))
        if k[0] in homo:
            masked.append(counter)

    return {'seq'    : seq,
            'xyz'    : torch.cat(xyz,dim=0),
            'idx'    : torch.cat(idx,dim=0),
            'masked' : torch.Tensor(masked).int(),
            'label'  : item[0]}




def build_training_clusters(params, debug):
    val_ids = set([int(l) for l in open(params['VAL']).readlines()])
    test_ids = set([int(l) for l in open(params['TEST']).readlines()])
   
    if debug:
        val_ids = []
        test_ids = []
 
    # read & clean list.csv
    with open(params['LIST'], 'r') as f:
        reader = csv.reader(f)
        next(reader)
        rows = [[r[0],r[3],int(r[4])] for r in reader
                if float(r[2])<=params['RESCUT'] and
                parser.parse(r[1])<=parser.parse(params['DATCUT'])]
    
    # compile training and validation sets
    train = {}
    valid = {}
    test = {}

    if debug:
        rows = rows[:20]
    for r in rows:
        if r[2] in val_ids:
            if r[2] in valid.keys():
                valid[r[2]].append(r[:2])
            else:
                valid[r[2]] = [r[:2]]
        elif r[2] in test_ids:
            if r[2] in test.keys():
                test[r[2]].append(r[:2])
            else:
                test[r[2]] = [r[:2]]
        else:
            if r[2] in train.keys():
                train[r[2]].append(r[:2])
            else:
                train[r[2]] = [r[:2]]
    if debug:
        valid=train       
    return train, valid, test