Spaces:
Sleeping
Sleeping
File size: 37,697 Bytes
8c639ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Constants used in AlphaFold.
Adapted from original code by alexechu.
"""
import collections
import functools
import os
from typing import List, Mapping, Tuple
import numpy as np
import tree
# Internal import (35fd).
# Distance from one CA to next CA [trans configuration: omega = 180].
ca_ca = 3.80209737096
# Format: The list for each AA type contains chi1, chi2, chi3, chi4 in
# this order (or a relevant subset from chi1 onwards). ALA and GLY don't have
# chi angles so their chi angle lists are empty.
chi_angles_atoms = {
"ALA": [],
# Chi5 in arginine is always 0 +- 5 degrees, so ignore it.
"ARG": [
["N", "CA", "CB", "CG"],
["CA", "CB", "CG", "CD"],
["CB", "CG", "CD", "NE"],
["CG", "CD", "NE", "CZ"],
],
"ASN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]],
"ASP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]],
"CYS": [["N", "CA", "CB", "SG"]],
"GLN": [
["N", "CA", "CB", "CG"],
["CA", "CB", "CG", "CD"],
["CB", "CG", "CD", "OE1"],
],
"GLU": [
["N", "CA", "CB", "CG"],
["CA", "CB", "CG", "CD"],
["CB", "CG", "CD", "OE1"],
],
"GLY": [],
"HIS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "ND1"]],
"ILE": [["N", "CA", "CB", "CG1"], ["CA", "CB", "CG1", "CD1"]],
"LEU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"LYS": [
["N", "CA", "CB", "CG"],
["CA", "CB", "CG", "CD"],
["CB", "CG", "CD", "CE"],
["CG", "CD", "CE", "NZ"],
],
"MET": [
["N", "CA", "CB", "CG"],
["CA", "CB", "CG", "SD"],
["CB", "CG", "SD", "CE"],
],
"PHE": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"PRO": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"]],
"SER": [["N", "CA", "CB", "OG"]],
"THR": [["N", "CA", "CB", "OG1"]],
"TRP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"TYR": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"VAL": [["N", "CA", "CB", "CG1"]],
}
# If chi angles given in fixed-length array, this matrix determines how to mask
# them for each AA type. The order is as per restype_order (see below).
chi_angles_mask = [
[0.0, 0.0, 0.0, 0.0], # ALA
[1.0, 1.0, 1.0, 1.0], # ARG
[1.0, 1.0, 0.0, 0.0], # ASN
[1.0, 1.0, 0.0, 0.0], # ASP
[1.0, 0.0, 0.0, 0.0], # CYS
[1.0, 1.0, 1.0, 0.0], # GLN
[1.0, 1.0, 1.0, 0.0], # GLU
[0.0, 0.0, 0.0, 0.0], # GLY
[1.0, 1.0, 0.0, 0.0], # HIS
[1.0, 1.0, 0.0, 0.0], # ILE
[1.0, 1.0, 0.0, 0.0], # LEU
[1.0, 1.0, 1.0, 1.0], # LYS
[1.0, 1.0, 1.0, 0.0], # MET
[1.0, 1.0, 0.0, 0.0], # PHE
[1.0, 1.0, 0.0, 0.0], # PRO
[1.0, 0.0, 0.0, 0.0], # SER
[1.0, 0.0, 0.0, 0.0], # THR
[1.0, 1.0, 0.0, 0.0], # TRP
[1.0, 1.0, 0.0, 0.0], # TYR
[1.0, 0.0, 0.0, 0.0], # VAL
]
# The following chi angles are pi periodic: they can be rotated by a multiple
# of pi without affecting the structure.
chi_pi_periodic = [
[0.0, 0.0, 0.0, 0.0], # ALA
[0.0, 0.0, 0.0, 0.0], # ARG
[0.0, 0.0, 0.0, 0.0], # ASN
[0.0, 1.0, 0.0, 0.0], # ASP
[0.0, 0.0, 0.0, 0.0], # CYS
[0.0, 0.0, 0.0, 0.0], # GLN
[0.0, 0.0, 1.0, 0.0], # GLU
[0.0, 0.0, 0.0, 0.0], # GLY
[0.0, 0.0, 0.0, 0.0], # HIS
[0.0, 0.0, 0.0, 0.0], # ILE
[0.0, 0.0, 0.0, 0.0], # LEU
[0.0, 0.0, 0.0, 0.0], # LYS
[0.0, 0.0, 0.0, 0.0], # MET
[0.0, 1.0, 0.0, 0.0], # PHE
[0.0, 0.0, 0.0, 0.0], # PRO
[0.0, 0.0, 0.0, 0.0], # SER
[0.0, 0.0, 0.0, 0.0], # THR
[0.0, 0.0, 0.0, 0.0], # TRP
[0.0, 1.0, 0.0, 0.0], # TYR
[0.0, 0.0, 0.0, 0.0], # VAL
[0.0, 0.0, 0.0, 0.0], # UNK
]
# Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi,
# psi and chi angles:
# 0: 'backbone group',
# 1: 'pre-omega-group', (empty)
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
# 3: 'psi-group',
# 4,5,6,7: 'chi1,2,3,4-group'
# The atom positions are relative to the axis-end-atom of the corresponding
# rotation axis. The x-axis is in direction of the rotation axis, and the y-axis
# is defined such that the dihedral-angle-defining atom (the last entry in
# chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate).
# format: [atomname, group_idx, rel_position]
rigid_group_atom_positions = {
"ALA": [
["N", 0, (-0.525, 1.363, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.526, -0.000, -0.000)],
["CB", 0, (-0.529, -0.774, -1.205)],
["O", 3, (0.627, 1.062, 0.000)],
],
"ARG": [
["N", 0, (-0.524, 1.362, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.525, -0.000, -0.000)],
["CB", 0, (-0.524, -0.778, -1.209)],
["O", 3, (0.626, 1.062, 0.000)],
["CG", 4, (0.616, 1.390, -0.000)],
["CD", 5, (0.564, 1.414, 0.000)],
["NE", 6, (0.539, 1.357, -0.000)],
["NH1", 7, (0.206, 2.301, 0.000)],
["NH2", 7, (2.078, 0.978, -0.000)],
["CZ", 7, (0.758, 1.093, -0.000)],
],
"ASN": [
["N", 0, (-0.536, 1.357, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.526, -0.000, -0.000)],
["CB", 0, (-0.531, -0.787, -1.200)],
["O", 3, (0.625, 1.062, 0.000)],
["CG", 4, (0.584, 1.399, 0.000)],
["ND2", 5, (0.593, -1.188, 0.001)],
["OD1", 5, (0.633, 1.059, 0.000)],
],
"ASP": [
["N", 0, (-0.525, 1.362, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.527, 0.000, -0.000)],
["CB", 0, (-0.526, -0.778, -1.208)],
["O", 3, (0.626, 1.062, -0.000)],
["CG", 4, (0.593, 1.398, -0.000)],
["OD1", 5, (0.610, 1.091, 0.000)],
["OD2", 5, (0.592, -1.101, -0.003)],
],
"CYS": [
["N", 0, (-0.522, 1.362, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.524, 0.000, 0.000)],
["CB", 0, (-0.519, -0.773, -1.212)],
["O", 3, (0.625, 1.062, -0.000)],
["SG", 4, (0.728, 1.653, 0.000)],
],
"GLN": [
["N", 0, (-0.526, 1.361, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.526, 0.000, 0.000)],
["CB", 0, (-0.525, -0.779, -1.207)],
["O", 3, (0.626, 1.062, -0.000)],
["CG", 4, (0.615, 1.393, 0.000)],
["CD", 5, (0.587, 1.399, -0.000)],
["NE2", 6, (0.593, -1.189, -0.001)],
["OE1", 6, (0.634, 1.060, 0.000)],
],
"GLU": [
["N", 0, (-0.528, 1.361, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.526, -0.000, -0.000)],
["CB", 0, (-0.526, -0.781, -1.207)],
["O", 3, (0.626, 1.062, 0.000)],
["CG", 4, (0.615, 1.392, 0.000)],
["CD", 5, (0.600, 1.397, 0.000)],
["OE1", 6, (0.607, 1.095, -0.000)],
["OE2", 6, (0.589, -1.104, -0.001)],
],
"GLY": [
["N", 0, (-0.572, 1.337, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.517, -0.000, -0.000)],
["O", 3, (0.626, 1.062, -0.000)],
],
"HIS": [
["N", 0, (-0.527, 1.360, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.525, 0.000, 0.000)],
["CB", 0, (-0.525, -0.778, -1.208)],
["O", 3, (0.625, 1.063, 0.000)],
["CG", 4, (0.600, 1.370, -0.000)],
["CD2", 5, (0.889, -1.021, 0.003)],
["ND1", 5, (0.744, 1.160, -0.000)],
["CE1", 5, (2.030, 0.851, 0.002)],
["NE2", 5, (2.145, -0.466, 0.004)],
],
"ILE": [
["N", 0, (-0.493, 1.373, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.527, -0.000, -0.000)],
["CB", 0, (-0.536, -0.793, -1.213)],
["O", 3, (0.627, 1.062, -0.000)],
["CG1", 4, (0.534, 1.437, -0.000)],
["CG2", 4, (0.540, -0.785, -1.199)],
["CD1", 5, (0.619, 1.391, 0.000)],
],
"LEU": [
["N", 0, (-0.520, 1.363, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.525, -0.000, -0.000)],
["CB", 0, (-0.522, -0.773, -1.214)],
["O", 3, (0.625, 1.063, -0.000)],
["CG", 4, (0.678, 1.371, 0.000)],
["CD1", 5, (0.530, 1.430, -0.000)],
["CD2", 5, (0.535, -0.774, 1.200)],
],
"LYS": [
["N", 0, (-0.526, 1.362, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.526, 0.000, 0.000)],
["CB", 0, (-0.524, -0.778, -1.208)],
["O", 3, (0.626, 1.062, -0.000)],
["CG", 4, (0.619, 1.390, 0.000)],
["CD", 5, (0.559, 1.417, 0.000)],
["CE", 6, (0.560, 1.416, 0.000)],
["NZ", 7, (0.554, 1.387, 0.000)],
],
"MET": [
["N", 0, (-0.521, 1.364, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.525, 0.000, 0.000)],
["CB", 0, (-0.523, -0.776, -1.210)],
["O", 3, (0.625, 1.062, -0.000)],
["CG", 4, (0.613, 1.391, -0.000)],
["SD", 5, (0.703, 1.695, 0.000)],
["CE", 6, (0.320, 1.786, -0.000)],
],
"PHE": [
["N", 0, (-0.518, 1.363, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.524, 0.000, -0.000)],
["CB", 0, (-0.525, -0.776, -1.212)],
["O", 3, (0.626, 1.062, -0.000)],
["CG", 4, (0.607, 1.377, 0.000)],
["CD1", 5, (0.709, 1.195, -0.000)],
["CD2", 5, (0.706, -1.196, 0.000)],
["CE1", 5, (2.102, 1.198, -0.000)],
["CE2", 5, (2.098, -1.201, -0.000)],
["CZ", 5, (2.794, -0.003, -0.001)],
],
"PRO": [
["N", 0, (-0.566, 1.351, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.527, -0.000, 0.000)],
["CB", 0, (-0.546, -0.611, -1.293)],
["O", 3, (0.621, 1.066, 0.000)],
["CG", 4, (0.382, 1.445, 0.0)],
# ['CD', 5, (0.427, 1.440, 0.0)],
["CD", 5, (0.477, 1.424, 0.0)], # manually made angle 2 degrees larger
],
"SER": [
["N", 0, (-0.529, 1.360, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.525, -0.000, -0.000)],
["CB", 0, (-0.518, -0.777, -1.211)],
["O", 3, (0.626, 1.062, -0.000)],
["OG", 4, (0.503, 1.325, 0.000)],
],
"THR": [
["N", 0, (-0.517, 1.364, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.526, 0.000, -0.000)],
["CB", 0, (-0.516, -0.793, -1.215)],
["O", 3, (0.626, 1.062, 0.000)],
["CG2", 4, (0.550, -0.718, -1.228)],
["OG1", 4, (0.472, 1.353, 0.000)],
],
"TRP": [
["N", 0, (-0.521, 1.363, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.525, -0.000, 0.000)],
["CB", 0, (-0.523, -0.776, -1.212)],
["O", 3, (0.627, 1.062, 0.000)],
["CG", 4, (0.609, 1.370, -0.000)],
["CD1", 5, (0.824, 1.091, 0.000)],
["CD2", 5, (0.854, -1.148, -0.005)],
["CE2", 5, (2.186, -0.678, -0.007)],
["CE3", 5, (0.622, -2.530, -0.007)],
["NE1", 5, (2.140, 0.690, -0.004)],
["CH2", 5, (3.028, -2.890, -0.013)],
["CZ2", 5, (3.283, -1.543, -0.011)],
["CZ3", 5, (1.715, -3.389, -0.011)],
],
"TYR": [
["N", 0, (-0.522, 1.362, 0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.524, -0.000, -0.000)],
["CB", 0, (-0.522, -0.776, -1.213)],
["O", 3, (0.627, 1.062, -0.000)],
["CG", 4, (0.607, 1.382, -0.000)],
["CD1", 5, (0.716, 1.195, -0.000)],
["CD2", 5, (0.713, -1.194, -0.001)],
["CE1", 5, (2.107, 1.200, -0.002)],
["CE2", 5, (2.104, -1.201, -0.003)],
["OH", 5, (4.168, -0.002, -0.005)],
["CZ", 5, (2.791, -0.001, -0.003)],
],
"VAL": [
["N", 0, (-0.494, 1.373, -0.000)],
["CA", 0, (0.000, 0.000, 0.000)],
["C", 0, (1.527, -0.000, -0.000)],
["CB", 0, (-0.533, -0.795, -1.213)],
["O", 3, (0.627, 1.062, -0.000)],
["CG1", 4, (0.540, 1.429, -0.000)],
["CG2", 4, (0.533, -0.776, 1.203)],
],
}
# A list of atoms (excluding hydrogen) for each AA type. PDB naming convention.
residue_atoms = {
"ALA": ["C", "CA", "CB", "N", "O"],
"ARG": ["C", "CA", "CB", "CG", "CD", "CZ", "N", "NE", "O", "NH1", "NH2"],
"ASP": ["C", "CA", "CB", "CG", "N", "O", "OD1", "OD2"],
"ASN": ["C", "CA", "CB", "CG", "N", "ND2", "O", "OD1"],
"CYS": ["C", "CA", "CB", "N", "O", "SG"],
"GLU": ["C", "CA", "CB", "CG", "CD", "N", "O", "OE1", "OE2"],
"GLN": ["C", "CA", "CB", "CG", "CD", "N", "NE2", "O", "OE1"],
"GLY": ["C", "CA", "N", "O"],
"HIS": ["C", "CA", "CB", "CG", "CD2", "CE1", "N", "ND1", "NE2", "O"],
"ILE": ["C", "CA", "CB", "CG1", "CG2", "CD1", "N", "O"],
"LEU": ["C", "CA", "CB", "CG", "CD1", "CD2", "N", "O"],
"LYS": ["C", "CA", "CB", "CG", "CD", "CE", "N", "NZ", "O"],
"MET": ["C", "CA", "CB", "CG", "CE", "N", "O", "SD"],
"PHE": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O"],
"PRO": ["C", "CA", "CB", "CG", "CD", "N", "O"],
"SER": ["C", "CA", "CB", "N", "O", "OG"],
"THR": ["C", "CA", "CB", "CG2", "N", "O", "OG1"],
"TRP": [
"C",
"CA",
"CB",
"CG",
"CD1",
"CD2",
"CE2",
"CE3",
"CZ2",
"CZ3",
"CH2",
"N",
"NE1",
"O",
],
"TYR": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O", "OH"],
"VAL": ["C", "CA", "CB", "CG1", "CG2", "N", "O"],
}
# Naming swaps for ambiguous atom names.
# Due to symmetries in the amino acids the naming of atoms is ambiguous in
# 4 of the 20 amino acids.
# (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities
# in LEU, VAL and ARG can be resolved by using the 3d constellations of
# the 'ambiguous' atoms and their neighbours)
residue_atom_renaming_swaps = {
"ASP": {"OD1": "OD2"},
"GLU": {"OE1": "OE2"},
"PHE": {"CD1": "CD2", "CE1": "CE2"},
"TYR": {"CD1": "CD2", "CE1": "CE2"},
}
# Van der Waals radii [Angstroem] of the atoms (from Wikipedia)
van_der_waals_radius = {
"C": 1.7,
"N": 1.55,
"O": 1.52,
"S": 1.8,
}
Bond = collections.namedtuple("Bond", ["atom1_name", "atom2_name", "length", "stddev"])
BondAngle = collections.namedtuple(
"BondAngle", ["atom1_name", "atom2_name", "atom3name", "angle_rad", "stddev"]
)
@functools.lru_cache(maxsize=None)
def load_stereo_chemical_props() -> (
Tuple[
Mapping[str, List[Bond]],
Mapping[str, List[Bond]],
Mapping[str, List[BondAngle]],
]
):
"""Load stereo_chemical_props.txt into a nice structure.
Load literature values for bond lengths and bond angles and translate
bond angles into the length of the opposite edge of the triangle
("residue_virtual_bonds").
Returns:
residue_bonds: Dict that maps resname -> list of Bond tuples.
residue_virtual_bonds: Dict that maps resname -> list of Bond tuples.
residue_bond_angles: Dict that maps resname -> list of BondAngle tuples.
"""
stereo_chemical_props_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "stereo_chemical_props.txt"
)
with open(stereo_chemical_props_path, "rt") as f:
stereo_chemical_props = f.read()
lines_iter = iter(stereo_chemical_props.splitlines())
# Load bond lengths.
residue_bonds = {}
next(lines_iter) # Skip header line.
for line in lines_iter:
if line.strip() == "-":
break
bond, resname, length, stddev = line.split()
atom1, atom2 = bond.split("-")
if resname not in residue_bonds:
residue_bonds[resname] = []
residue_bonds[resname].append(Bond(atom1, atom2, float(length), float(stddev)))
residue_bonds["UNK"] = []
# Load bond angles.
residue_bond_angles = {}
next(lines_iter) # Skip empty line.
next(lines_iter) # Skip header line.
for line in lines_iter:
if line.strip() == "-":
break
bond, resname, angle_degree, stddev_degree = line.split()
atom1, atom2, atom3 = bond.split("-")
if resname not in residue_bond_angles:
residue_bond_angles[resname] = []
residue_bond_angles[resname].append(
BondAngle(
atom1,
atom2,
atom3,
float(angle_degree) / 180.0 * np.pi,
float(stddev_degree) / 180.0 * np.pi,
)
)
residue_bond_angles["UNK"] = []
def make_bond_key(atom1_name, atom2_name):
"""Unique key to lookup bonds."""
return "-".join(sorted([atom1_name, atom2_name]))
# Translate bond angles into distances ("virtual bonds").
residue_virtual_bonds = {}
for resname, bond_angles in residue_bond_angles.items():
# Create a fast lookup dict for bond lengths.
bond_cache = {}
for b in residue_bonds[resname]:
bond_cache[make_bond_key(b.atom1_name, b.atom2_name)] = b
residue_virtual_bonds[resname] = []
for ba in bond_angles:
bond1 = bond_cache[make_bond_key(ba.atom1_name, ba.atom2_name)]
bond2 = bond_cache[make_bond_key(ba.atom2_name, ba.atom3name)]
# Compute distance between atom1 and atom3 using the law of cosines
# c^2 = a^2 + b^2 - 2ab*cos(gamma).
gamma = ba.angle_rad
length = np.sqrt(
bond1.length**2
+ bond2.length**2
- 2 * bond1.length * bond2.length * np.cos(gamma)
)
# Propagation of uncertainty assuming uncorrelated errors.
dl_outer = 0.5 / length
dl_dgamma = (2 * bond1.length * bond2.length * np.sin(gamma)) * dl_outer
dl_db1 = (2 * bond1.length - 2 * bond2.length * np.cos(gamma)) * dl_outer
dl_db2 = (2 * bond2.length - 2 * bond1.length * np.cos(gamma)) * dl_outer
stddev = np.sqrt(
(dl_dgamma * ba.stddev) ** 2
+ (dl_db1 * bond1.stddev) ** 2
+ (dl_db2 * bond2.stddev) ** 2
)
residue_virtual_bonds[resname].append(
Bond(ba.atom1_name, ba.atom3name, length, stddev)
)
return (residue_bonds, residue_virtual_bonds, residue_bond_angles)
# Between-residue bond lengths for general bonds (first element) and for Proline
# (second element).
between_res_bond_length_c_n = [1.329, 1.341]
between_res_bond_length_stddev_c_n = [0.014, 0.016]
# Between-residue cos_angles.
between_res_cos_angles_c_n_ca = [-0.5203, 0.0353] # degrees: 121.352 +- 2.315
between_res_cos_angles_ca_c_n = [-0.4473, 0.0311] # degrees: 116.568 +- 1.995
# This mapping is used when we need to store atom data in a format that requires
# fixed atom data size for every residue (e.g. a numpy array).
atom_types = [
"N",
"CA",
"C",
"CB",
"O",
"CG",
"CG1",
"CG2",
"OG",
"OG1",
"SG",
"CD",
"CD1",
"CD2",
"ND1",
"ND2",
"OD1",
"OD2",
"SD",
"CE",
"CE1",
"CE2",
"CE3",
"NE",
"NE1",
"NE2",
"OE1",
"OE2",
"CH2",
"NH1",
"NH2",
"OH",
"CZ",
"CZ2",
"CZ3",
"NZ",
"OXT",
]
atom_order = {atom_type: i for i, atom_type in enumerate(atom_types)}
atom_type_num = len(atom_types) # := 37.
# A compact atom encoding with 14 columns
# pylint: disable=line-too-long
# pylint: disable=bad-whitespace
restype_name_to_atom14_names = {
"ALA": ["N", "CA", "C", "O", "CB", "", "", "", "", "", "", "", "", ""],
"ARG": [
"N",
"CA",
"C",
"O",
"CB",
"CG",
"CD",
"NE",
"CZ",
"NH1",
"NH2",
"",
"",
"",
],
"ASN": ["N", "CA", "C", "O", "CB", "CG", "OD1", "ND2", "", "", "", "", "", ""],
"ASP": ["N", "CA", "C", "O", "CB", "CG", "OD1", "OD2", "", "", "", "", "", ""],
"CYS": ["N", "CA", "C", "O", "CB", "SG", "", "", "", "", "", "", "", ""],
"GLN": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "NE2", "", "", "", "", ""],
"GLU": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "OE2", "", "", "", "", ""],
"GLY": ["N", "CA", "C", "O", "", "", "", "", "", "", "", "", "", ""],
"HIS": [
"N",
"CA",
"C",
"O",
"CB",
"CG",
"ND1",
"CD2",
"CE1",
"NE2",
"",
"",
"",
"",
],
"ILE": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "CD1", "", "", "", "", "", ""],
"LEU": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "", "", "", "", "", ""],
"LYS": ["N", "CA", "C", "O", "CB", "CG", "CD", "CE", "NZ", "", "", "", "", ""],
"MET": ["N", "CA", "C", "O", "CB", "CG", "SD", "CE", "", "", "", "", "", ""],
"PHE": [
"N",
"CA",
"C",
"O",
"CB",
"CG",
"CD1",
"CD2",
"CE1",
"CE2",
"CZ",
"",
"",
"",
],
"PRO": ["N", "CA", "C", "O", "CB", "CG", "CD", "", "", "", "", "", "", ""],
"SER": ["N", "CA", "C", "O", "CB", "OG", "", "", "", "", "", "", "", ""],
"THR": ["N", "CA", "C", "O", "CB", "OG1", "CG2", "", "", "", "", "", "", ""],
"TRP": [
"N",
"CA",
"C",
"O",
"CB",
"CG",
"CD1",
"CD2",
"NE1",
"CE2",
"CE3",
"CZ2",
"CZ3",
"CH2",
],
"TYR": [
"N",
"CA",
"C",
"O",
"CB",
"CG",
"CD1",
"CD2",
"CE1",
"CE2",
"CZ",
"OH",
"",
"",
],
"VAL": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "", "", "", "", "", "", ""],
"UNK": ["", "", "", "", "", "", "", "", "", "", "", "", "", ""],
}
# pylint: enable=line-too-long
# pylint: enable=bad-whitespace
# This is the standard residue order when coding AA type as a number.
# Reproduce it by taking 3-letter AA codes and sorting them alphabetically.
restypes = [
"A",
"R",
"N",
"D",
"C",
"Q",
"E",
"G",
"H",
"I",
"L",
"K",
"M",
"F",
"P",
"S",
"T",
"W",
"Y",
"V",
]
restype_order = {restype: i for i, restype in enumerate(restypes)}
restype_num = len(restypes) # := 20.
unk_restype_index = restype_num # Catch-all index for unknown restypes.
restypes_with_x = restypes + ["X"]
restype_order_with_x = {restype: i for i, restype in enumerate(restypes_with_x)}
def sequence_to_onehot(
sequence: str, mapping: Mapping[str, int], map_unknown_to_x: bool = False
) -> np.ndarray:
"""Maps the given sequence into a one-hot encoded matrix.
Args:
sequence: An amino acid sequence.
mapping: A dictionary mapping amino acids to integers.
map_unknown_to_x: If True, any amino acid that is not in the mapping will be
mapped to the unknown amino acid 'X'. If the mapping doesn't contain
amino acid 'X', an error will be thrown. If False, any amino acid not in
the mapping will throw an error.
Returns:
A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of
the sequence.
Raises:
ValueError: If the mapping doesn't contain values from 0 to
num_unique_aas - 1 without any gaps.
"""
num_entries = max(mapping.values()) + 1
if sorted(set(mapping.values())) != list(range(num_entries)):
raise ValueError(
"The mapping must have values from 0 to num_unique_aas-1 "
"without any gaps. Got: %s" % sorted(mapping.values())
)
one_hot_arr = np.zeros((len(sequence), num_entries), dtype=np.int32)
for aa_index, aa_type in enumerate(sequence):
if map_unknown_to_x:
if aa_type.isalpha() and aa_type.isupper():
aa_id = mapping.get(aa_type, mapping["X"])
else:
raise ValueError(f"Invalid character in the sequence: {aa_type}")
else:
aa_id = mapping[aa_type]
one_hot_arr[aa_index, aa_id] = 1
return one_hot_arr
restype_1to3 = {
"A": "ALA",
"R": "ARG",
"N": "ASN",
"D": "ASP",
"C": "CYS",
"Q": "GLN",
"E": "GLU",
"G": "GLY",
"H": "HIS",
"I": "ILE",
"L": "LEU",
"K": "LYS",
"M": "MET",
"F": "PHE",
"P": "PRO",
"S": "SER",
"T": "THR",
"W": "TRP",
"Y": "TYR",
"V": "VAL",
}
# NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple
# 1-to-1 mapping of 3 letter names to one letter names. The latter contains
# many more, and less common, three letter names as keys and maps many of these
# to the same one letter name (including 'X' and 'U' which we don't use here).
restype_3to1 = {v: k for k, v in restype_1to3.items()}
# Define a restype name for all unknown residues.
unk_restype = "UNK"
resnames = [restype_1to3[r] for r in restypes] + [unk_restype]
resname_to_idx = {resname: i for i, resname in enumerate(resnames)}
# Define exploded all-atom representation (atom73)
atom73_names = ['N', 'CA', 'C', 'CB', 'O']
for aa1 in restypes:
aa3 = restype_1to3[aa1]
atom_list = residue_atoms[aa3]
for atom in atom_types:
if atom in atom_list and atom not in atom73_names:
atom73_names.append(f'{aa1}{atom}')
atom73_names_to_idx = {a: i for i, a in enumerate(atom73_names)}
restype_atom73_mask = np.zeros((22, 73))
for i, restype in enumerate(restypes):
for atom_name in atom_types:
atom73_name = atom_name
if atom_name not in ['N', 'CA', 'C', 'CB', 'O']:
atom73_name = restype + atom_name
if atom73_name in atom73_names_to_idx:
atom73_idx = atom73_names_to_idx[atom73_name]
restype_atom73_mask[i, atom73_idx] = 1
# Remove CB for glycine
restype_atom73_mask[restype_order["G"], 3] = 0
# Backbone atoms for unk and mask
restype_atom73_mask[-2:, [0, 1, 2, 4]] = 1
# The mapping here uses hhblits convention, so that B is mapped to D, J and O
# are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the
# remaining 20 amino acids are kept in alphabetical order.
# There are 2 non-amino acid codes, X (representing any amino acid) and
# "-" representing a missing amino acid in an alignment. The id for these
# codes is put at the end (20 and 21) so that they can easily be ignored if
# desired.
HHBLITS_AA_TO_ID = {
"A": 0,
"B": 2,
"C": 1,
"D": 2,
"E": 3,
"F": 4,
"G": 5,
"H": 6,
"I": 7,
"J": 20,
"K": 8,
"L": 9,
"M": 10,
"N": 11,
"O": 20,
"P": 12,
"Q": 13,
"R": 14,
"S": 15,
"T": 16,
"U": 1,
"V": 17,
"W": 18,
"X": 20,
"Y": 19,
"Z": 3,
"-": 21,
}
# Partial inversion of HHBLITS_AA_TO_ID.
ID_TO_HHBLITS_AA = {
0: "A",
1: "C", # Also U.
2: "D", # Also B.
3: "E", # Also Z.
4: "F",
5: "G",
6: "H",
7: "I",
8: "K",
9: "L",
10: "M",
11: "N",
12: "P",
13: "Q",
14: "R",
15: "S",
16: "T",
17: "V",
18: "W",
19: "Y",
20: "X", # Includes J and O.
21: "-",
}
restypes_with_x_and_gap = restypes + ["X", "-"]
MAP_HHBLITS_AATYPE_TO_OUR_AATYPE = tuple(
restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i])
for i in range(len(restypes_with_x_and_gap))
)
def _make_standard_atom_mask() -> np.ndarray:
"""Returns [num_res_types, num_atom_types] mask array."""
# +1 to account for unknown (all 0s).
mask = np.zeros([restype_num + 1, atom_type_num], dtype=np.int32)
for restype, restype_letter in enumerate(restypes):
restype_name = restype_1to3[restype_letter]
atom_names = residue_atoms[restype_name]
for atom_name in atom_names:
atom_type = atom_order[atom_name]
mask[restype, atom_type] = 1
return mask
STANDARD_ATOM_MASK = _make_standard_atom_mask()
# A one hot representation for the first and second atoms defining the axis
# of rotation for each chi-angle in each residue.
def chi_angle_atom(atom_index: int) -> np.ndarray:
"""Define chi-angle rigid groups via one-hot representations."""
chi_angles_index = {}
one_hots = []
for k, v in chi_angles_atoms.items():
indices = [atom_types.index(s[atom_index]) for s in v]
indices.extend([-1] * (4 - len(indices)))
chi_angles_index[k] = indices
for r in restypes:
res3 = restype_1to3[r]
one_hot = np.eye(atom_type_num)[chi_angles_index[res3]]
one_hots.append(one_hot)
one_hots.append(np.zeros([4, atom_type_num])) # Add zeros for residue `X`.
one_hot = np.stack(one_hots, axis=0)
one_hot = np.transpose(one_hot, [0, 2, 1])
return one_hot
chi_atom_1_one_hot = chi_angle_atom(1)
chi_atom_2_one_hot = chi_angle_atom(2)
# An array like chi_angles_atoms but using indices rather than names.
chi_angles_atom_indices = [chi_angles_atoms[restype_1to3[r]] for r in restypes]
chi_angles_atom_indices = tree.map_structure(
lambda atom_name: atom_order[atom_name], chi_angles_atom_indices
)
chi_angles_atom_indices = np.array(
[
chi_atoms + ([[0, 0, 0, 0]] * (4 - len(chi_atoms)))
for chi_atoms in chi_angles_atom_indices
]
)
# Mapping from (res_name, atom_name) pairs to the atom's chi group index
# and atom index within that group.
chi_groups_for_atom = collections.defaultdict(list)
for res_name, chi_angle_atoms_for_res in chi_angles_atoms.items():
for chi_group_i, chi_group in enumerate(chi_angle_atoms_for_res):
for atom_i, atom in enumerate(chi_group):
chi_groups_for_atom[(res_name, atom)].append((chi_group_i, atom_i))
chi_groups_for_atom = dict(chi_groups_for_atom)
def _make_rigid_transformation_4x4(ex, ey, translation):
"""Create a rigid 4x4 transformation matrix from two axes and transl."""
# Normalize ex.
ex_normalized = ex / np.linalg.norm(ex)
# make ey perpendicular to ex
ey_normalized = ey - np.dot(ey, ex_normalized) * ex_normalized
ey_normalized /= np.linalg.norm(ey_normalized)
# compute ez as cross product
eznorm = np.cross(ex_normalized, ey_normalized)
m = np.stack([ex_normalized, ey_normalized, eznorm, translation]).transpose()
m = np.concatenate([m, [[0.0, 0.0, 0.0, 1.0]]], axis=0)
return m
# create an array with (restype, atomtype) --> rigid_group_idx
# and an array with (restype, atomtype, coord) for the atom positions
# and compute affine transformation matrices (4,4) from one rigid group to the
# previous group
restype_atom37_to_rigid_group = np.zeros([21, 37], dtype=int)
restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
restype_atom37_rigid_group_positions = np.zeros([21, 37, 3], dtype=np.float32)
restype_atom14_to_rigid_group = np.zeros([21, 14], dtype=int)
restype_atom14_mask = np.zeros([21, 14], dtype=np.float32)
restype_atom14_rigid_group_positions = np.zeros([21, 14, 3], dtype=np.float32)
restype_rigid_group_default_frame = np.zeros([21, 8, 4, 4], dtype=np.float32)
def _make_rigid_group_constants():
"""Fill the arrays above."""
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
for atomname, group_idx, atom_position in rigid_group_atom_positions[resname]:
atomtype = atom_order[atomname]
restype_atom37_to_rigid_group[restype, atomtype] = group_idx
restype_atom37_mask[restype, atomtype] = 1
restype_atom37_rigid_group_positions[restype, atomtype, :] = atom_position
atom14idx = restype_name_to_atom14_names[resname].index(atomname)
restype_atom14_to_rigid_group[restype, atom14idx] = group_idx
restype_atom14_mask[restype, atom14idx] = 1
restype_atom14_rigid_group_positions[restype, atom14idx, :] = atom_position
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
atom_positions = {
name: np.array(pos) for name, _, pos in rigid_group_atom_positions[resname]
}
# backbone to backbone is the identity transform
restype_rigid_group_default_frame[restype, 0, :, :] = np.eye(4)
# pre-omega-frame to backbone (currently dummy identity matrix)
restype_rigid_group_default_frame[restype, 1, :, :] = np.eye(4)
# phi-frame to backbone
mat = _make_rigid_transformation_4x4(
ex=atom_positions["N"] - atom_positions["CA"],
ey=np.array([1.0, 0.0, 0.0]),
translation=atom_positions["N"],
)
restype_rigid_group_default_frame[restype, 2, :, :] = mat
# psi-frame to backbone
mat = _make_rigid_transformation_4x4(
ex=atom_positions["C"] - atom_positions["CA"],
ey=atom_positions["CA"] - atom_positions["N"],
translation=atom_positions["C"],
)
restype_rigid_group_default_frame[restype, 3, :, :] = mat
# chi1-frame to backbone
if chi_angles_mask[restype][0]:
base_atom_names = chi_angles_atoms[resname][0]
base_atom_positions = [atom_positions[name] for name in base_atom_names]
mat = _make_rigid_transformation_4x4(
ex=base_atom_positions[2] - base_atom_positions[1],
ey=base_atom_positions[0] - base_atom_positions[1],
translation=base_atom_positions[2],
)
restype_rigid_group_default_frame[restype, 4, :, :] = mat
# chi2-frame to chi1-frame
# chi3-frame to chi2-frame
# chi4-frame to chi3-frame
# luckily all rotation axes for the next frame start at (0,0,0) of the
# previous frame
for chi_idx in range(1, 4):
if chi_angles_mask[restype][chi_idx]:
axis_end_atom_name = chi_angles_atoms[resname][chi_idx][2]
axis_end_atom_position = atom_positions[axis_end_atom_name]
mat = _make_rigid_transformation_4x4(
ex=axis_end_atom_position,
ey=np.array([-1.0, 0.0, 0.0]),
translation=axis_end_atom_position,
)
restype_rigid_group_default_frame[restype, 4 + chi_idx, :, :] = mat
_make_rigid_group_constants()
def make_atom14_dists_bounds(overlap_tolerance=1.5, bond_length_tolerance_factor=15):
"""compute upper and lower bounds for bonds to assess violations."""
restype_atom14_bond_lower_bound = np.zeros([21, 14, 14], np.float32)
restype_atom14_bond_upper_bound = np.zeros([21, 14, 14], np.float32)
restype_atom14_bond_stddev = np.zeros([21, 14, 14], np.float32)
residue_bonds, residue_virtual_bonds, _ = load_stereo_chemical_props()
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
atom_list = restype_name_to_atom14_names[resname]
# create lower and upper bounds for clashes
for atom1_idx, atom1_name in enumerate(atom_list):
if not atom1_name:
continue
atom1_radius = van_der_waals_radius[atom1_name[0]]
for atom2_idx, atom2_name in enumerate(atom_list):
if (not atom2_name) or atom1_idx == atom2_idx:
continue
atom2_radius = van_der_waals_radius[atom2_name[0]]
lower = atom1_radius + atom2_radius - overlap_tolerance
upper = 1e10
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
# overwrite lower and upper bounds for bonds and angles
for b in residue_bonds[resname] + residue_virtual_bonds[resname]:
atom1_idx = atom_list.index(b.atom1_name)
atom2_idx = atom_list.index(b.atom2_name)
lower = b.length - bond_length_tolerance_factor * b.stddev
upper = b.length + bond_length_tolerance_factor * b.stddev
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
restype_atom14_bond_stddev[restype, atom1_idx, atom2_idx] = b.stddev
restype_atom14_bond_stddev[restype, atom2_idx, atom1_idx] = b.stddev
return {
"lower_bound": restype_atom14_bond_lower_bound, # shape (21,14,14)
"upper_bound": restype_atom14_bond_upper_bound, # shape (21,14,14)
"stddev": restype_atom14_bond_stddev, # shape (21,14,14)
}
standard_residue_bonds, _, standard_residue_bond_angles = load_stereo_chemical_props()
|