Spaces:
Sleeping
Sleeping
File size: 12,099 Bytes
8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec 22e3abd 8c639ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu
Entry point for unconditional or simple conditional sampling.
"""
import argparse
from datetime import datetime
import json
import os
import shlex
import subprocess
import sys
import time
from einops import repeat
import torch
from core import data
from core import residue_constants
from core import utils
import diffusion
import models
import sampling
def draw_and_save_samples(
model,
samples_per_len=8,
lengths=range(50, 512),
save_dir="./",
mode="backbone",
**sampling_kwargs,
):
device = model.device
if mode == "backbone":
total_sampling_time = 0
for l in lengths:
prot_lens = torch.ones(samples_per_len).long() * l
seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
aux = sampling.draw_backbone_samples(
model,
seq_mask=seq_mask,
pdb_save_path=f"{save_dir}/len{format(l, '03d')}_samp",
return_aux=True,
return_sampling_runtime=True,
**sampling_kwargs,
)
total_sampling_time += aux["runtime"]
print("Samples drawn for length", l)
return total_sampling_time
elif mode == "allatom":
total_sampling_time = 0
for l in lengths:
prot_lens = torch.ones(samples_per_len).long() * l
seq_mask = model.make_seq_mask_for_sampling(prot_lens=prot_lens)
aux = sampling.draw_allatom_samples(
model,
seq_mask=seq_mask,
pdb_save_path=f"{save_dir}/len{format(l, '03d')}",
return_aux=True,
**sampling_kwargs,
)
total_sampling_time += aux["runtime"]
print("Samples drawn for length", l)
return total_sampling_time
def parse_idx_string(idx_str):
spans = idx_str.split(",")
idxs = []
for s in spans:
if "-" in s:
start, stop = s.split("-")
idxs.extend(list(range(int(start), int(stop))))
else:
idxs.append(int(s))
return idxs
class Manager(object):
def __init__(self):
self.parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter
)
self.parser.add_argument(
"--model_checkpoint",
type=str,
default="checkpoints",
help="Path to denoiser model weights and config",
)
self.parser.add_argument(
"--mpnnpath",
type=str,
default="checkpoints/minimpnn_state_dict.pth",
help="Path to minimpnn model weights",
)
self.parser.add_argument(
"--modeldir",
type=str,
help="Model base directory, ex 'training_logs/other/lemon-shape-51'",
)
self.parser.add_argument("--modelepoch", type=int, help="Model epoch, ex 1000")
self.parser.add_argument(
"--type", type=str, default="allatom", help="Type of model"
)
self.parser.add_argument(
"--param", type=str, default=None, help="Which sampling param to vary"
)
self.parser.add_argument(
"--paramval", type=str, default=None, help="Which param val to use"
)
self.parser.add_argument(
"--parampath",
type=str,
default=None,
help="Path to json file with params, either use param/paramval or parampath, not both",
)
self.parser.add_argument(
"--perlen", type=int, default=2, help="How many samples per sequence length"
)
self.parser.add_argument(
"--minlen", type=int, default=50, help="Minimum sequence length"
)
self.parser.add_argument(
"--maxlen",
type=int,
default=60,
help="Maximum sequence length, not inclusive",
)
self.parser.add_argument(
"--steplen",
type=int,
default=5,
help="How frequently to select sequence length, for steplen 2, would be 50, 52, 54, etc",
)
self.parser.add_argument(
"--num_lens",
type=int,
required=False,
help="If steplen not provided, how many random lengths to sample at",
)
self.parser.add_argument(
"--targetdir", type=str, default=".", help="Directory to save results"
)
self.parser.add_argument(
"--input_pdb", type=str, required=False, help="PDB file to condition on"
)
self.parser.add_argument(
"--resample_idxs",
type=str,
required=False,
help="Indices from PDB file to resample. Zero-indexed, comma-delimited, can use dashes, eg 0,2-5,7",
)
def add_argument(self, *args, **kwargs):
self.parser.add_argument(*args, **kwargs)
def parse_args(self):
self.args = self.parser.parse_args()
return self.args
def main():
# Set up params, arguments, sampling config
####################
manager = Manager()
manager.parse_args()
args = manager.args
print(args)
is_test_run = False
seed = 0
samples_per_len = args.perlen
min_len = args.minlen
max_len = args.maxlen
len_step_size = args.steplen
device = "cuda:0"
# setting default sampling config
if args.type == "backbone":
sampling_config = sampling.default_backbone_sampling_config()
elif args.type == "allatom":
sampling_config = sampling.default_allatom_sampling_config()
sampling_kwargs = vars(sampling_config)
# Parse conditioning inputs
input_pdb_len = None
if args.input_pdb:
input_feats = utils.load_feats_from_pdb(args.input_pdb, protein_only=True)
input_pdb_len = input_feats["aatype"].shape[0]
if args.resample_idxs:
print(
f"Warning: when sampling conditionally, the input pdb length ({input_pdb_len} residues) is used automatically for the sampling lengths."
)
resample_idxs = parse_idx_string(args.resample_idxs)
else:
resample_idxs = list(range(input_pdb_len))
cond_idxs = [i for i in range(input_pdb_len) if i not in resample_idxs]
to_batch_size = lambda x: repeat(x, "... -> b ...", b=samples_per_len).to(
device
)
# For unconditional model, center coords on whole structure
centered_coords = data.apply_random_se3(
input_feats["atom_positions"],
atom_mask=input_feats["atom_mask"],
translation_scale=0.0,
)
cond_kwargs = {}
cond_kwargs["gt_coords"] = to_batch_size(centered_coords)
cond_kwargs["gt_cond_atom_mask"] = to_batch_size(input_feats["atom_mask"])
cond_kwargs["gt_cond_atom_mask"][:, resample_idxs] = 0
cond_kwargs["gt_aatype"] = to_batch_size(input_feats["aatype"])
cond_kwargs["gt_cond_seq_mask"] = torch.zeros_like(cond_kwargs["gt_aatype"])
cond_kwargs["gt_cond_seq_mask"][:, cond_idxs] = 1
sampling_kwargs.update(cond_kwargs)
# Determine lengths to sample at
if min_len is not None and max_len is not None:
if len_step_size is not None:
sampling_lengths = range(min_len, max_len, len_step_size)
else:
sampling_lengths = list(
torch.randint(min_len, max_len, size=(args.num_lens,))
)
elif input_pdb_len is not None:
sampling_lengths = [input_pdb_len]
else:
raise Exception("Need to provide a set of protein lengths or an input pdb.")
total_num_samples = len(list(sampling_lengths)) * samples_per_len
model_directory = args.modeldir
epoch = args.modelepoch
base_dir = args.targetdir
date_string = datetime.now().strftime("%y-%m-%d-%H-%M-%S")
if is_test_run:
date_string = f"test-{date_string}"
# Update sampling config with arguments
if args.param:
var_param = args.param
var_value = args.paramval
sampling_kwargs[var_param] = (
None
if var_value == "None"
else int(var_value)
if var_param == "n_steps"
else float(var_value)
)
elif args.parampath:
with open(args.parampath) as f:
var_params = json.loads(f.read())
sampling_kwargs.update(var_params)
# this is only used for the readme, keep s_min and s_max as params instead of struct_noise_schedule
sampling_kwargs_readme = list(sampling_kwargs.items())
print("Base directory:", base_dir)
save_dir = f"{base_dir}/samples"
save_init_dir = f"{base_dir}/samples_inits"
print("Samples saved to:", save_dir)
####################
torch.manual_seed(seed)
if not os.path.exists(save_dir):
subprocess.run(shlex.split(f"mkdir -p {save_dir}"))
if not os.path.exists(save_init_dir):
subprocess.run(shlex.split(f"mkdir -p {save_init_dir}"))
# Load model
if args.type == "backbone":
if args.model_checkpoint:
checkpoint = f"{args.model_checkpoint}/backbone_state_dict.pth"
cfg_path = f"{args.model_checkpoint}/backbone_pretrained.yml"
else:
checkpoint = (
f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
)
cfg_path = f"{model_directory}/configs/backbone.yml"
config = utils.load_config(cfg_path)
weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
model = models.Protpardelle(config, device=device)
model.load_state_dict(weights)
model.to(device)
model.eval()
model.device = device
elif args.type == "allatom":
if args.model_checkpoint:
checkpoint = f"{args.model_checkpoint}/allatom_state_dict.pth"
cfg_path = f"{args.model_checkpoint}/allatom_pretrained.yml"
else:
checkpoint = (
f"{model_directory}/checkpoints/epoch{epoch}_training_state.pth"
)
cfg_path = f"{model_directory}/configs/allatom.yml"
config = utils.load_config(cfg_path)
weights = torch.load(checkpoint, map_location=device)["model_state_dict"]
model = models.Protpardelle(config, device=device)
model.load_state_dict(weights)
model.load_minimpnn(args.mpnnpath)
model.to(device)
model.eval()
model.device = device
if config.train.home_dir == '':
config.train.home_dir = os.getcwd()
# Sampling
with open(save_dir + "/readme.txt", "w") as f:
f.write(f"Sampling run for {date_string}\n")
f.write(f"Random seed {seed}\n")
f.write(f"Model checkpoint: {checkpoint}\n")
f.write(
f"{samples_per_len} samples per length from {min_len}:{max_len}:{len_step_size}\n"
)
f.write("Sampling params:\n")
for k, v in sampling_kwargs_readme:
f.write(f"{k}\t{v}\n")
print(f"Model loaded from {checkpoint}")
print(f"Beginning sampling for {date_string}...")
# Draw samples
start_time = time.time()
sampling_time = draw_and_save_samples(
model,
samples_per_len=samples_per_len,
lengths=sampling_lengths,
save_dir=save_dir,
mode=args.type,
**sampling_kwargs,
)
time_elapsed = time.time() - start_time
print(f"Sampling concluded after {time_elapsed} seconds.")
print(f"Of this, {sampling_time} seconds were for actual sampling.")
print(f"{total_num_samples} total samples were drawn.")
with open(save_dir + "/readme.txt", "a") as f:
f.write(f"Total job time: {time_elapsed} seconds\n")
f.write(f"Model run time: {sampling_time} seconds\n")
f.write(f"Total samples drawn: {total_num_samples}\n")
return
if __name__ == "__main__":
main()
|