Spaces:
Sleeping
Sleeping
File size: 13,808 Bytes
8c639ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu
Utils for computing evaluation metrics.
"""
import argparse
import os
import warnings
from typing import Tuple
from Bio.Align import substitution_matrices
import numpy as np
import torch
from transformers import AutoTokenizer, EsmForProteinFolding
from torchtyping import TensorType
from core import residue_constants
from core import utils
from core import protein_mpnn as mpnn
import modules
import sampling
def mean(x):
if len(x) == 0:
return 0
return sum(x) / len(x)
def calculate_seq_identity(seq1, seq2, seq_mask=None):
identity = (seq1 == seq2.to(seq1)).float()
if seq_mask is not None:
identity *= seq_mask.to(seq1)
return identity.sum(-1) / seq_mask.to(seq1).sum(-1).clamp(min=1)
else:
return identity.mean(-1)
def design_sequence(coords, model=None, num_seqs=1, disallow_aas=["C"]):
# Returns list of strs; seqs like 'MKRLLDS', not aatypes
if model is None:
model = mpnn.get_mpnn_model()
if isinstance(coords, str):
temp_pdb = False
pdb_fn = coords
else:
temp_pdb = True
pdb_fn = f"tmp{np.random.randint(0, 1e8)}.pdb"
gly_idx = residue_constants.restype_order["G"]
gly_aatype = (torch.ones(coords.shape[0]) * gly_idx).long()
utils.write_coords_to_pdb(coords, pdb_fn, batched=False, aatype=gly_aatype)
with torch.no_grad():
designed_seqs = mpnn.run_proteinmpnn(
model=model,
pdb_path=pdb_fn,
num_seq_per_target=num_seqs,
omit_AAs=disallow_aas,
)
if temp_pdb:
os.system("rm " + pdb_fn)
return designed_seqs
def get_esmfold_model(device=None):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1").to(device)
model.esm = model.esm.half()
return model
def inference_esmfold(sequence_list, model, tokenizer):
inputs = tokenizer(
sequence_list,
return_tensors="pt",
padding=True,
add_special_tokens=False,
).to(model.device)
outputs = model(**inputs)
# positions is shape (l, b, n, a, c)
pred_coords = outputs.positions[-1].contiguous()
plddts = (outputs.plddt[:, :, 1] * inputs.attention_mask).sum(
-1
) / inputs.attention_mask.sum(-1).clamp(min=1e-3)
return pred_coords, plddts
def predict_structures(sequences, model="esmfold", tokenizer=None, force_unk_to_X=True):
# Expects seqs like 'MKRLLDS', not aatypes
# model can be a model, or a string describing which pred model to load
if isinstance(sequences, str):
sequences = [sequences]
if model == "esmfold":
model = get_esmfold_model()
device = model.device
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
aatype = [utils.seq_to_aatype(seq).to(device) for seq in sequences]
with torch.no_grad():
if isinstance(model, EsmForProteinFolding):
pred_coords, plddts = inference_esmfold(sequences, model, tokenizer)
seq_lens = [len(s) for s in sequences]
trimmed_coords = [c[: seq_lens[i]] for i, c in enumerate(pred_coords)]
trimmed_coords_atom37 = [
utils.atom37_coords_from_atom14(c, aatype[i])
for i, c in enumerate(trimmed_coords)
]
return trimmed_coords_atom37, plddts
def compute_structure_metric(coords1, coords2, metric="ca_rmsd", atom_mask=None):
# coords1 tensor[l][a][3]
def _tmscore(a, b, mask=None):
length = len(b)
dists = (a - b).pow(2).sum(-1)
d0 = 1.24 * ((length - 15) ** (1 / 3)) - 1.8
term = 1 / (1 + ((dists) / (d0**2)))
if mask is None:
return term.mean()
else:
term = term * mask
return term.sum() / mask.sum().clamp(min=1)
aligned_coords1_ca, (R, t) = utils.kabsch_align(coords1[:, 1], coords2[:, 1])
aligned_coords1 = coords1 - coords1[:, 1:2].mean(0, keepdim=True)
aligned_coords1 = aligned_coords1 @ R.t() + t
if metric == "ca_rmsd":
return (aligned_coords1_ca - coords2[:, 1]).pow(2).sum(-1).sqrt().mean()
elif metric == "tm_score":
tm = _tmscore(aligned_coords1_ca, coords2[:, 1])
# TODO: return 1 - tm score for now so sorts work properly
return 1 - tm
elif metric == "allatom_tm":
# Align on Ca, compute allatom TM
assert atom_mask is not None
return _tmscore(aligned_coords1, coords2, mask=atom_mask)
elif metric == "allatom_lddt":
assert atom_mask is not None
lddt = modules.lddt(
coords1.reshape(-1, 3),
coords2.reshape(-1, 3),
atom_mask.reshape(-1, 1),
per_residue=False,
)
return lddt
else:
raise NotImplementedError
def compute_self_consistency(
comparison_structures, # can be sampled or ground truth
sampled_sequences=None,
mpnn_model=None,
struct_pred_model=None,
tokenizer=None,
num_seqs=1,
return_aux=False,
metric="ca_rmsd",
output_file=None,
):
# Typically used for eval of backbone sampling or sequence design or joint sampling
# (Maybe MPNN) + Fold + TM/RMSD
# Expects seqs like 'MKRLLDS', not aatypes
per_sample_primary_metrics = []
per_sample_secondary_metrics = []
per_sample_plddts = []
per_sample_coords = []
per_sample_seqs = []
aux = {}
for i, coords in enumerate(comparison_structures):
if sampled_sequences is None:
seqs_to_predict = design_sequence(
coords, model=mpnn_model, num_seqs=num_seqs
)
else:
seqs_to_predict = sampled_sequences[i]
pred_coords, plddts = predict_structures(
seqs_to_predict, model=struct_pred_model, tokenizer=tokenizer
)
primary_metric_name = "tm_score" if metric == "tm_score" else "ca_rmsd"
secondary_metric_name = "tm_score" if metric == "both" else None
primary_metrics = [
compute_structure_metric(coords.to(pred), pred, metric=primary_metric_name)
for pred in pred_coords
]
if secondary_metric_name:
secondary_metrics = [
compute_structure_metric(
coords.to(pred), pred, metric=secondary_metric_name
)
for pred in pred_coords
]
aux.setdefault(secondary_metric_name, []).extend(secondary_metrics)
else:
secondary_metrics = primary_metrics
aux.setdefault("pred", []).extend(pred_coords)
seqs_to_predict_arr = seqs_to_predict
if isinstance(seqs_to_predict_arr, str):
seqs_to_predict_arr = [seqs_to_predict_arr]
aux.setdefault("seqs", []).extend(seqs_to_predict_arr)
aux.setdefault("plddt", []).extend(plddts)
aux.setdefault("rmsd", []).extend(primary_metrics)
# Report best rmsd design only among MPNN reps
all_designs = [
(m, p, t, c, s)
for m, p, t, c, s in zip(
primary_metrics,
plddts,
secondary_metrics,
pred_coords,
seqs_to_predict_arr,
)
]
best_rmsd_design = min(all_designs, key=lambda x: x[0])
per_sample_primary_metrics.append(best_rmsd_design[0].detach().cpu())
per_sample_plddts.append(best_rmsd_design[1].detach().cpu())
per_sample_secondary_metrics.append(best_rmsd_design[2].detach().cpu())
per_sample_coords.append(best_rmsd_design[3])
per_sample_seqs.append(best_rmsd_design[4])
best_idx = np.argmin(per_sample_primary_metrics)
metrics = {
"sc_rmsd_best": per_sample_primary_metrics[best_idx],
"sc_plddt_best": per_sample_plddts[best_idx],
"sc_rmsd_mean": mean(per_sample_primary_metrics),
"sc_plddt_mean": mean(per_sample_plddts),
}
if metric == "both":
metrics["sc_tmscore_best"] = per_sample_secondary_metrics[best_idx]
metrics["sc_tmscore_mean"] = mean(per_sample_secondary_metrics)
if output_file:
pred_coords = per_sample_coords
designed_seqs = per_sample_seqs
if torch.isnan(pred_coords[best_idx]).sum() == 0:
designed_seq = utils.seq_to_aatype(designed_seqs[best_idx])
utils.write_coords_to_pdb(
pred_coords[best_idx],
output_file,
batched=False,
aatype=designed_seq,
)
if return_aux:
return metrics, best_idx, aux
else:
return metrics, best_idx
def compute_secondary_structure_content(coords_batch):
dssp_sample = []
for i, c in enumerate(coords_batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
dssp_str = utils.get_3state_dssp(coords=c)
if dssp_str is None or len(dssp_str) == 0:
pass
else:
dssp_sample.append(dssp_str)
dssp_sample = "".join(dssp_sample)
metrics = {}
metrics["sample_pct_beta"] = mean([c == "E" for c in dssp_sample])
metrics["sample_pct_alpha"] = mean([c == "H" for c in dssp_sample])
return metrics
def compute_bond_length_metric(
cropped_coords_list, cropped_aatypes_list, atom_mask=None
):
bond_length_dict = utils.batched_fullatom_bond_lengths_from_coords(
cropped_coords_list, cropped_aatypes_list, atom_mask=atom_mask
)
all_errors = {}
for aa1, d in bond_length_dict.items():
aa3 = residue_constants.restype_1to3[aa1]
per_bond_errors = []
for bond, lengths in d.items():
a1, a2 = bond.split("-")
ideal_val = None
for bond in residue_constants.standard_residue_bonds[aa3]:
if (
bond.atom1_name == a1
and bond.atom2_name == a2
or bond.atom1_name == a2
and bond.atom2_name == a1
):
ideal_val = bond.length
break
error = (np.array(lengths) - ideal_val) ** 2
per_bond_errors.append(error.mean() ** 0.5)
if len(per_bond_errors) > 0: # often no Cys
per_res_errors = np.mean(per_bond_errors)
all_errors[aa1] = per_res_errors
return np.mean(list(all_errors.values()))
def evaluate_backbone_generation(
model,
n_samples=1,
mpnn_model=None,
struct_pred_model=None,
tokenizer=None,
sample_length_range=(50, 512),
):
sampling_config = sampling.default_backbone_sampling_config()
trimmed_coords, seq_mask = sampling.draw_backbone_samples(
model,
n_samples=n_samples,
sample_length_range=sample_length_range,
**vars(sampling_config),
)
sc_metrics, best_idx, aux = compute_self_consistency(
trimmed_coords,
mpnn_model=mpnn_model,
struct_pred_model=struct_pred_model,
tokenizer=tokenizer,
return_aux=True,
)
dssp_metrics = compute_secondary_structure_content(trimmed_coords)
all_metrics = {**sc_metrics, **dssp_metrics}
all_metrics = {f"bb_{k}": v for k, v in all_metrics.items()}
return all_metrics, (trimmed_coords, seq_mask, best_idx, aux["pred"], aux["seqs"])
def evaluate_allatom_generation(
model,
n_samples,
two_stage_sampling=True,
struct_pred_model=None,
tokenizer=None,
sample_length_range=(50, 512),
):
# Convert allatom model to codesign model by loading miniMPNN
model.task = "codesign"
model.load_minimpnn()
model.eval()
sampling_config = sampling.default_allatom_sampling_config()
ret = sampling.draw_allatom_samples(
model,
n_samples=n_samples,
two_stage_sampling=two_stage_sampling,
**vars(sampling_config),
)
(
cropped_samp_coords,
cropped_samp_aatypes,
samp_atom_mask,
stage1_coords,
seq_mask,
) = ret
# Compute self consistency
if struct_pred_model is None:
struct_pred_model = EsmForProteinFolding.from_pretrained(
"facebook/esmfold_v1"
).to(device)
struct_pred_model.esm = struct_pred_model.esm.half()
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
designed_seqs = [utils.aatype_to_seq(a) for a in cropped_samp_aatypes]
sc_metrics, best_idx, sc_aux = compute_self_consistency(
comparison_structures=cropped_samp_coords,
sampled_sequences=designed_seqs,
struct_pred_model=struct_pred_model,
tokenizer=tokenizer,
return_aux=True,
)
aa_metrics_out = {f"aa_{k}": v for k, v in sc_metrics.items()}
# Compute secondary structure content
cropped_bb_coords = [c[..., [0, 1, 2, 4], :] for c in cropped_samp_coords]
dssp_metrics = compute_secondary_structure_content(cropped_bb_coords)
aa_metrics_out = {**aa_metrics_out, **dssp_metrics}
# Compute bond length RMSE
if two_stage_sampling: # compute on original sample
bond_rmse_coords = stage1_coords
else:
bond_rmse_coords = cropped_samp_coords
bond_rmse = compute_bond_length_metric(
bond_rmse_coords, cropped_samp_aatypes, samp_atom_mask
)
aa_metrics_out["aa_bond_rmse"] = bond_rmse
# Convert codesign model back to allatom model and return metrics
model.task = "allatom"
model.remove_minimpnn()
aa_aux_out = (
cropped_samp_coords,
cropped_samp_aatypes,
samp_atom_mask,
sc_aux["pred"],
best_idx,
)
return aa_metrics_out, aa_aux_out
|