File size: 12,238 Bytes
8c639ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Protein data type.
Adapted from original code by alexechu.
"""
import dataclasses
import io
from typing import Any, Mapping, Optional
from core import residue_constants
from Bio.PDB import PDBParser
import numpy as np

FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any]  # Is a nested dict.

# Complete sequence of chain IDs supported by the PDB format.
PDB_CHAIN_IDS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
PDB_MAX_CHAINS = len(PDB_CHAIN_IDS)  # := 62.


@dataclasses.dataclass(frozen=True)
class Protein:
    """Protein structure representation."""

    # Cartesian coordinates of atoms in angstroms. The atom types correspond to
    # residue_constants.atom_types, i.e. the first three are N, CA, CB.
    atom_positions: np.ndarray  # [num_res, num_atom_type, 3]

    # Amino-acid type for each residue represented as an integer between 0 and
    # 20, where 20 is 'X'.
    aatype: np.ndarray  # [num_res]

    # Binary float mask to indicate presence of a particular atom. 1.0 if an atom
    # is present and 0.0 if not. This should be used for loss masking.
    atom_mask: np.ndarray  # [num_res, num_atom_type]

    # Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
    residue_index: np.ndarray  # [num_res]

    # 0-indexed number corresponding to the chain in the protein that this residue
    # belongs to.
    chain_index: np.ndarray  # [num_res]

    # B-factors, or temperature factors, of each residue (in sq. angstroms units),
    # representing the displacement of the residue from its ground truth mean
    # value.
    b_factors: np.ndarray  # [num_res, num_atom_type]

    def __post_init__(self):
        if len(np.unique(self.chain_index)) > PDB_MAX_CHAINS:
            raise ValueError(
                f"Cannot build an instance with more than {PDB_MAX_CHAINS} chains "
                "because these cannot be written to PDB format."
            )


def from_pdb_string(
    pdb_str: str, chain_id: Optional[str] = None, protein_only: bool = False
) -> Protein:
    """Takes a PDB string and constructs a Protein object.

    WARNING: All non-standard residue types will be converted into UNK. All
      non-standard atoms will be ignored.

    Args:
      pdb_str: The contents of the pdb file
      chain_id: If chain_id is specified (e.g. A), then only that chain
        is parsed. Otherwise all chains are parsed.

    Returns:
      A new `Protein` parsed from the pdb contents.
    """
    pdb_fh = io.StringIO(pdb_str)
    parser = PDBParser(QUIET=True)
    structure = parser.get_structure("none", pdb_fh)
    models = list(structure.get_models())
    if len(models) != 1:
        raise ValueError(
            f"Only single model PDBs are supported. Found {len(models)} models."
        )
    model = models[0]

    atom_positions = []
    aatype = []
    atom_mask = []
    residue_index = []
    chain_ids = []
    b_factors = []

    for chain in model:
        if chain_id is not None and chain.id != chain_id:
            continue
        for res in chain:
            if protein_only and res.id[0] != " ":
                continue
            if res.id[2] != " ":
                pass
                # raise ValueError(
                #     f"PDB contains an insertion code at chain {chain.id} and residue "
                #     f"index {res.id[1]}. These are not supported."
                # )
            res_shortname = residue_constants.restype_3to1.get(res.resname, "X")
            restype_idx = residue_constants.restype_order.get(
                res_shortname, residue_constants.restype_num
            )
            pos = np.zeros((residue_constants.atom_type_num, 3))
            mask = np.zeros((residue_constants.atom_type_num,))
            res_b_factors = np.zeros((residue_constants.atom_type_num,))
            for atom in res:
                if atom.name not in residue_constants.atom_types:
                    continue
                pos[residue_constants.atom_order[atom.name]] = atom.coord
                mask[residue_constants.atom_order[atom.name]] = 1.0
                res_b_factors[residue_constants.atom_order[atom.name]] = atom.bfactor
            if np.sum(mask) < 0.5:
                # If no known atom positions are reported for the residue then skip it.
                continue
            aatype.append(restype_idx)
            atom_positions.append(pos)
            atom_mask.append(mask)
            residue_index.append(res.id[1])
            chain_ids.append(chain.id)
            b_factors.append(res_b_factors)

    # Chain IDs are usually characters so map these to ints.
    unique_chain_ids = np.unique(chain_ids)
    chain_id_mapping = {cid: n for n, cid in enumerate(unique_chain_ids)}
    chain_index = np.array([chain_id_mapping[cid] for cid in chain_ids])

    return Protein(
        atom_positions=np.array(atom_positions),
        atom_mask=np.array(atom_mask),
        aatype=np.array(aatype),
        residue_index=np.array(residue_index),
        chain_index=chain_index,
        b_factors=np.array(b_factors),
    )


def _chain_end(atom_index, end_resname, chain_name, residue_index) -> str:
    chain_end = "TER"
    return (
        f"{chain_end:<6}{atom_index:>5}      {end_resname:>3} "
        f"{chain_name:>1}{residue_index:>4}"
    )


def are_atoms_bonded(res3name, atom1_name, atom2_name):
    lookup_table = residue_constants.standard_residue_bonds
    for bond in lookup_table[res3name]:
        if bond.atom1_name == atom1_name and bond.atom2_name == atom2_name:
            return True
        elif bond.atom1_name == atom2_name and bond.atom2_name == atom1_name:
            return True
    return False


def to_pdb(prot: Protein, conect=False) -> str:
    """Converts a `Protein` instance to a PDB string.

    Args:
      prot: The protein to convert to PDB.

    Returns:
      PDB string.
    """
    restypes = residue_constants.restypes + ["X"]
    res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], "UNK")
    atom_types = residue_constants.atom_types

    pdb_lines = []

    atom_mask = prot.atom_mask
    aatype = prot.aatype
    atom_positions = prot.atom_positions
    residue_index = prot.residue_index.astype(np.int32)
    chain_index = prot.chain_index.astype(np.int32)
    b_factors = prot.b_factors

    if np.any(aatype > residue_constants.restype_num):
        raise ValueError("Invalid aatypes.")

    # Construct a mapping from chain integer indices to chain ID strings.
    chain_ids = {}
    for i in np.unique(chain_index):  # np.unique gives sorted output.
        if i >= PDB_MAX_CHAINS:
            raise ValueError(
                f"The PDB format supports at most {PDB_MAX_CHAINS} chains."
            )
        chain_ids[i] = PDB_CHAIN_IDS[i]

    pdb_lines.append("MODEL     1")
    atom_index = 1
    last_chain_index = chain_index[0]
    conect_lines = []
    # Add all atom sites.
    for i in range(aatype.shape[0]):
        # Close the previous chain if in a multichain PDB.
        if last_chain_index != chain_index[i]:
            pdb_lines.append(
                _chain_end(
                    atom_index,
                    res_1to3(aatype[i - 1]),
                    chain_ids[chain_index[i - 1]],
                    residue_index[i - 1],
                )
            )
            last_chain_index = chain_index[i]
            atom_index += 1  # Atom index increases at the TER symbol.

        res_name_3 = res_1to3(aatype[i])
        atoms_appended_for_res = []
        for atom_name, pos, mask, b_factor in zip(
            atom_types, atom_positions[i], atom_mask[i], b_factors[i]
        ):
            if mask < 0.5:
                continue

            record_type = "ATOM"
            name = atom_name if len(atom_name) == 4 else f" {atom_name}"
            alt_loc = ""
            insertion_code = ""
            occupancy = 1.00
            element = atom_name[0]  # Protein supports only C, N, O, S, this works.
            charge = ""
            # PDB is a columnar format, every space matters here!
            atom_line = (
                f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
                f"{res_name_3:>3} {chain_ids[chain_index[i]]:>1}"
                f"{residue_index[i]:>4}{insertion_code:>1}   "
                f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
                f"{occupancy:>6.2f}{b_factor:>6.2f}          "
                f"{element:>2}{charge:>2}"
            )
            pdb_lines.append(atom_line)

            for prev_atom_idx, prev_atom in atoms_appended_for_res:
                if are_atoms_bonded(res_name_3, atom_name, prev_atom):
                    conect_line = f"CONECT{prev_atom_idx:5d}{atom_index:5d}\n"
                    conect_lines.append(conect_line)
            atoms_appended_for_res.append((atom_index, atom_name))
            if atom_name == "N":
                n_atom_idx = atom_index
            if atom_name == "C":
                c_atom_idx = atom_index

            atom_index += 1

        if i > 0:
            conect_line = f"CONECT{prev_c_atom_idx:5d}{n_atom_idx:5d}\n"
            conect_lines.append(conect_line)
        prev_c_atom_idx = c_atom_idx

    # Close the final chain.
    pdb_lines.append(
        _chain_end(
            atom_index,
            res_1to3(aatype[-1]),
            chain_ids[chain_index[-1]],
            residue_index[-1],
        )
    )
    pdb_lines.append("ENDMDL")
    pdb_lines.append("END")

    # Pad all lines to 80 characters.
    pdb_lines = [line.ljust(80) for line in pdb_lines]
    pdb_str = "\n".join(pdb_lines) + "\n"  # Add terminating newline.
    if conect:
        conect_str = "".join(conect_lines) + "\n"
        return pdb_str, conect_str
    return pdb_str


def ideal_atom_mask(prot: Protein) -> np.ndarray:
    """Computes an ideal atom mask.

    `Protein.atom_mask` typically is defined according to the atoms that are
    reported in the PDB. This function computes a mask according to heavy atoms
    that should be present in the given sequence of amino acids.

    Args:
      prot: `Protein` whose fields are `numpy.ndarray` objects.

    Returns:
      An ideal atom mask.
    """
    return residue_constants.STANDARD_ATOM_MASK[prot.aatype]


def from_prediction(
    features: FeatureDict,
    result: ModelOutput,
    b_factors: Optional[np.ndarray] = None,
    remove_leading_feature_dimension: bool = True,
) -> Protein:
    """Assembles a protein from a prediction.

    Args:
      features: Dictionary holding model inputs.
      result: Dictionary holding model outputs.
      b_factors: (Optional) B-factors to use for the protein.
      remove_leading_feature_dimension: Whether to remove the leading dimension
        of the `features` values.

    Returns:
      A protein instance.
    """
    fold_output = result["structure_module"]

    def _maybe_remove_leading_dim(arr: np.ndarray) -> np.ndarray:
        return arr[0] if remove_leading_feature_dimension else arr

    if "asym_id" in features:
        chain_index = _maybe_remove_leading_dim(features["asym_id"])
    else:
        chain_index = np.zeros_like(_maybe_remove_leading_dim(features["aatype"]))

    if b_factors is None:
        b_factors = np.zeros_like(fold_output["final_atom_mask"])

    return Protein(
        aatype=_maybe_remove_leading_dim(features["aatype"]),
        atom_positions=fold_output["final_atom_positions"],
        atom_mask=fold_output["final_atom_mask"],
        residue_index=_maybe_remove_leading_dim(features["residue_index"]) + 1,
        chain_index=chain_index,
        b_factors=b_factors,
    )