Spaces:
Sleeping
Sleeping
File size: 31,623 Bytes
00aa807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo_wAF2.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AYZebfKn8gef"
},
"source": [
"#ProteinMPNN w/AF2\n",
"This notebook is intended as a quick demo, more features to come!\n",
"\n",
"Examples: \n",
"1. pdb: `6MRR`, homomer: `False`, designed_chain: `A`\n",
"2. pdb: `1X2I`, homomer: `True`, designed_chain: `A,B` \n",
" (for correct symmetric tying lenghts of homomer chains should be the same)"
]
},
{
"cell_type": "code",
"source": [
"#@title Setup ProteinMPNN\n",
"import warnings\n",
"warnings.simplefilter(action='ignore', category=FutureWarning)\n",
"\n",
"import json, time, os, sys, glob, re\n",
"from google.colab import files\n",
"import numpy as np\n",
"\n",
"if not os.path.isdir(\"ProteinMPNN\"):\n",
" os.system(\"git clone -q https://github.com/dauparas/ProteinMPNN.git\")\n",
"\n",
"if \"ProteinMPNN\" not in sys.path:\n",
" sys.path.append('/content/ProteinMPNN')\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import shutil\n",
"import warnings\n",
"import torch\n",
"from torch import optim\n",
"from torch.utils.data import DataLoader\n",
"from torch.utils.data.dataset import random_split, Subset\n",
"import copy\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import random\n",
"import os.path\n",
"from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB\n",
"from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN\n",
"\n",
"device = torch.device(\"cpu\")\n",
"#v_48_010=version with 48 edges 0.10A noise\n",
"model_name = \"v_48_020\" #@param [\"v_48_002\", \"v_48_010\", \"v_48_020\", \"v_48_030\"]\n",
"\n",
"\n",
"backbone_noise=0.00 # Standard deviation of Gaussian noise to add to backbone atoms\n",
"\n",
"path_to_model_weights='/content/ProteinMPNN/vanilla_model_weights' \n",
"hidden_dim = 128\n",
"num_layers = 3 \n",
"model_folder_path = path_to_model_weights\n",
"if model_folder_path[-1] != '/':\n",
" model_folder_path = model_folder_path + '/'\n",
"checkpoint_path = model_folder_path + f'{model_name}.pt'\n",
"\n",
"checkpoint = torch.load(checkpoint_path, map_location=device) \n",
"print('Number of edges:', checkpoint['num_edges'])\n",
"noise_level_print = checkpoint['noise_level']\n",
"print(f'Training noise level: {noise_level_print}A')\n",
"model = ProteinMPNN(num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=backbone_noise, k_neighbors=checkpoint['num_edges'])\n",
"model.to(device)\n",
"model.load_state_dict(checkpoint['model_state_dict'])\n",
"model.eval()\n",
"print(\"Model loaded\")\n",
"\n",
"def make_tied_positions_for_homomers(pdb_dict_list):\n",
" my_dict = {}\n",
" for result in pdb_dict_list:\n",
" all_chain_list = sorted([item[-1:] for item in list(result) if item[:9]=='seq_chain']) #A, B, C, ...\n",
" tied_positions_list = []\n",
" chain_length = len(result[f\"seq_chain_{all_chain_list[0]}\"])\n",
" for i in range(1,chain_length+1):\n",
" temp_dict = {}\n",
" for j, chain in enumerate(all_chain_list):\n",
" temp_dict[chain] = [i] #needs to be a list\n",
" tied_positions_list.append(temp_dict)\n",
" my_dict[result['name']] = tied_positions_list\n",
" return my_dict\n",
"\n",
"#########################\n",
"def get_pdb(pdb_code=\"\"):\n",
" if pdb_code is None or pdb_code == \"\":\n",
" upload_dict = files.upload()\n",
" pdb_string = upload_dict[list(upload_dict.keys())[0]]\n",
" with open(\"tmp.pdb\",\"wb\") as out: out.write(pdb_string)\n",
" return \"tmp.pdb\"\n",
" else:\n",
" os.system(f\"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb\")\n",
" return f\"{pdb_code}.pdb\""
],
"metadata": {
"id": "2nKSlaMlSpcf",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "xMVlYh8Fv2of"
},
"outputs": [],
"source": [
"#@title #Run ProteinMPNN\n",
"\n",
"#@markdown #### Input Options\n",
"pdb='6MRR' #@param {type:\"string\"}\n",
"pdb = pdb.replace(\" \",\"\")\n",
"pdb_path = get_pdb(pdb)\n",
"#@markdown - pdb code (leave blank to get an upload prompt)\n",
"\n",
"homomer = False #@param {type:\"boolean\"}\n",
"designed_chain = \"A\" #@param {type:\"string\"}\n",
"fixed_chain = \"\" #@param {type:\"string\"}\n",
"\n",
"if designed_chain == \"\":\n",
" designed_chain_list = []\n",
"else:\n",
" designed_chain_list = re.sub(\"[^A-Za-z]+\",\",\", designed_chain).split(\",\")\n",
"\n",
"if fixed_chain == \"\":\n",
" fixed_chain_list = []\n",
"else:\n",
" fixed_chain_list = re.sub(\"[^A-Za-z]+\",\",\", fixed_chain).split(\",\")\n",
"\n",
"chain_list = list(set(designed_chain_list + fixed_chain_list))\n",
"\n",
"#@markdown - specified which chain(s) to design and which chain(s) to keep fixed. \n",
"#@markdown Use comma:`A,B` to specifiy more than one chain\n",
"\n",
"#chain = \"A\" #@param {type:\"string\"}\n",
"#pdb_path_chains = chain\n",
"##@markdown - Define which chain to redesign\n",
"\n",
"#@markdown #### Design Options\n",
"num_seqs = 8 #@param [\"1\", \"2\", \"4\", \"8\", \"16\", \"32\", \"64\"] {type:\"raw\"}\n",
"num_seq_per_target = num_seqs\n",
"\n",
"#@markdown - Sampling temperature for amino acids, T=0.0 means taking argmax, T>>1.0 means sample randomly.\n",
"sampling_temp = \"0.1\" #@param [\"0.0001\", \"0.1\", \"0.15\", \"0.2\", \"0.25\", \"0.3\", \"0.5\"]\n",
"\n",
"\n",
"\n",
"save_score=0 # 0 for False, 1 for True; save score=-log_prob to npy files\n",
"save_probs=0 # 0 for False, 1 for True; save MPNN predicted probabilites per position\n",
"score_only=0 # 0 for False, 1 for True; score input backbone-sequence pairs\n",
"conditional_probs_only=0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)\n",
"conditional_probs_only_backbone=0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)\n",
" \n",
"batch_size=1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory\n",
"max_length=20000 # Max sequence length\n",
" \n",
"out_folder='.' # Path to a folder to output sequences, e.g. /home/out/\n",
"jsonl_path='' # Path to a folder with parsed pdb into jsonl\n",
"omit_AAs='X' # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.\n",
" \n",
"pssm_multi=0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions\n",
"pssm_threshold=0.0 # A value between -inf + inf to restric per position AAs\n",
"pssm_log_odds_flag=0 # 0 for False, 1 for True\n",
"pssm_bias_flag=0 # 0 for False, 1 for True\n",
"\n",
"\n",
"##############################################################\n",
"\n",
"folder_for_outputs = out_folder\n",
"\n",
"NUM_BATCHES = num_seq_per_target//batch_size\n",
"BATCH_COPIES = batch_size\n",
"temperatures = [float(item) for item in sampling_temp.split()]\n",
"omit_AAs_list = omit_AAs\n",
"alphabet = 'ACDEFGHIKLMNPQRSTVWYX'\n",
"\n",
"omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)\n",
"\n",
"chain_id_dict = None\n",
"fixed_positions_dict = None\n",
"pssm_dict = None\n",
"omit_AA_dict = None\n",
"bias_AA_dict = None\n",
"tied_positions_dict = None\n",
"bias_by_res_dict = None\n",
"bias_AAs_np = np.zeros(len(alphabet))\n",
"\n",
"\n",
"###############################################################\n",
"pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list)\n",
"dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=max_length)\n",
"\n",
"chain_id_dict = {}\n",
"chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list)\n",
"\n",
"print(chain_id_dict)\n",
"for chain in chain_list:\n",
" l = len(pdb_dict_list[0][f\"seq_chain_{chain}\"])\n",
" print(f\"Length of chain {chain} is {l}\")\n",
"\n",
"if homomer:\n",
" tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list)\n",
"else:\n",
" tied_positions_dict = None\n",
"\n",
"#################################################################\n",
"sequences = []\n",
"with torch.no_grad():\n",
" print('Generating sequences...')\n",
" for ix, protein in enumerate(dataset_valid):\n",
" score_list = []\n",
" all_probs_list = []\n",
" all_log_probs_list = []\n",
" S_sample_list = []\n",
" batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]\n",
" X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict)\n",
" pssm_log_odds_mask = (pssm_log_odds_all > pssm_threshold).float() #1.0 for true, 0.0 for false\n",
" name_ = batch_clones[0]['name']\n",
"\n",
" randn_1 = torch.randn(chain_M.shape, device=X.device)\n",
" log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)\n",
" mask_for_loss = mask*chain_M*chain_M_pos\n",
" scores = _scores(S, log_probs, mask_for_loss)\n",
" native_score = scores.cpu().data.numpy()\n",
"\n",
" for temp in temperatures:\n",
" for j in range(NUM_BATCHES):\n",
" randn_2 = torch.randn(chain_M.shape, device=X.device)\n",
" if tied_positions_dict == None:\n",
" sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), bias_by_res=bias_by_res_all)\n",
" S_sample = sample_dict[\"S\"] \n",
" else:\n",
" sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)\n",
" # Compute scores\n",
" S_sample = sample_dict[\"S\"]\n",
" log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict[\"decoding_order\"])\n",
" mask_for_loss = mask*chain_M*chain_M_pos\n",
" scores = _scores(S_sample, log_probs, mask_for_loss)\n",
" scores = scores.cpu().data.numpy()\n",
" all_probs_list.append(sample_dict[\"probs\"].cpu().data.numpy())\n",
" all_log_probs_list.append(log_probs.cpu().data.numpy())\n",
" S_sample_list.append(S_sample.cpu().data.numpy())\n",
" for b_ix in range(BATCH_COPIES):\n",
" masked_chain_length_list = masked_chain_length_list_list[b_ix]\n",
" masked_list = masked_list_list[b_ix]\n",
" seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix])\n",
" seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])\n",
" score = scores[b_ix]\n",
" score_list.append(score)\n",
" native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])\n",
" if b_ix == 0 and j==0 and temp==temperatures[0]:\n",
" start = 0\n",
" end = 0\n",
" list_of_AAs = []\n",
" for mask_l in masked_chain_length_list:\n",
" end += mask_l\n",
" list_of_AAs.append(native_seq[start:end])\n",
" start = end\n",
" native_seq = \"\".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))\n",
" l0 = 0\n",
" for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:\n",
" l0 += mc_length\n",
" native_seq = native_seq[:l0] + '/' + native_seq[l0:]\n",
" l0 += 1\n",
" sorted_masked_chain_letters = np.argsort(masked_list_list[0])\n",
" print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters]\n",
" sorted_visible_chain_letters = np.argsort(visible_list_list[0])\n",
" print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters]\n",
" native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4)\n",
" line = '>{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\\n{}\\n'.format(name_, native_score_print, print_visible_chains, print_masked_chains, model_name, native_seq)\n",
" print(line.rstrip())\n",
" start = 0\n",
" end = 0\n",
" list_of_AAs = []\n",
" for mask_l in masked_chain_length_list:\n",
" end += mask_l\n",
" list_of_AAs.append(seq[start:end])\n",
" start = end\n",
"\n",
" seq = \"\".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))\n",
" l0 = 0\n",
" for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:\n",
" l0 += mc_length\n",
" seq = seq[:l0] + '/' + seq[l0:]\n",
" l0 += 1\n",
" score_print = np.format_float_positional(np.float32(score), unique=False, precision=4)\n",
" seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4)\n",
" line = '>T={}, sample={}, score={}, seq_recovery={}\\n{}\\n'.format(temp,b_ix,score_print,seq_rec_print,seq)\n",
" sequences.append(seq)\n",
" print(line.rstrip())\n",
"\n",
"\n",
"all_probs_concat = np.concatenate(all_probs_list)\n",
"all_log_probs_concat = np.concatenate(all_log_probs_list)\n",
"S_sample_concat = np.concatenate(S_sample_list)"
]
},
{
"cell_type": "markdown",
"source": [
"# Predict with AlphaFold2 (with single-sequence input)"
],
"metadata": {
"id": "5mQ4VLG1dPsd"
}
},
{
"cell_type": "code",
"source": [
"#@title Setup AlphaFold\n",
"\n",
"# import libraries\n",
"from IPython.utils import io\n",
"import os,sys,re\n",
"\n",
"if \"af_backprop\" not in sys.path:\n",
" import tensorflow as tf\n",
" import jax\n",
" import jax.numpy as jnp\n",
" import numpy as np\n",
" import matplotlib\n",
" from matplotlib import animation\n",
" import matplotlib.pyplot as plt\n",
" from IPython.display import HTML\n",
" import tqdm.notebook\n",
" TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]'\n",
"\n",
" with io.capture_output() as captured:\n",
" # install ALPHAFOLD\n",
" if not os.path.isdir(\"af_backprop\"):\n",
" %shell git clone https://github.com/sokrypton/af_backprop.git\n",
" %shell pip -q install biopython dm-haiku ml-collections py3Dmol\n",
" %shell wget -qnc https://raw.githubusercontent.com/sokrypton/ColabFold/main/beta/colabfold.py\n",
" if not os.path.isdir(\"params\"):\n",
" %shell mkdir params\n",
" %shell curl -fsSL https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar | tar x -C params\n",
"\n",
" if not os.path.exists(\"MMalign\"):\n",
" # install MMalign\n",
" os.system(\"wget -qnc https://zhanggroup.org/MM-align/bin/module/MMalign.cpp\")\n",
" os.system(\"g++ -static -O3 -ffast-math -o MMalign MMalign.cpp\")\n",
"\n",
" def mmalign(pdb_a,pdb_b):\n",
" # pass to MMalign\n",
" output = os.popen(f'./MMalign {pdb_a} {pdb_b}')\n",
" # parse outputs\n",
" parse_float = lambda x: float(x.split(\"=\")[1].split()[0])\n",
" tms = []\n",
" for line in output:\n",
" line = line.rstrip()\n",
" if line.startswith(\"TM-score\"): tms.append(parse_float(line))\n",
" return tms\n",
"\n",
" # configure which device to use\n",
" try:\n",
" # check if TPU is available\n",
" import jax.tools.colab_tpu\n",
" jax.tools.colab_tpu.setup_tpu()\n",
" print('Running on TPU')\n",
" DEVICE = \"tpu\"\n",
" except:\n",
" if jax.local_devices()[0].platform == 'cpu':\n",
" print(\"WARNING: no GPU detected, will be using CPU\")\n",
" DEVICE = \"cpu\"\n",
" else:\n",
" print('Running on GPU')\n",
" DEVICE = \"gpu\"\n",
" # disable GPU on tensorflow\n",
" tf.config.set_visible_devices([], 'GPU')\n",
"\n",
" # import libraries\n",
" sys.path.append('af_backprop')\n",
" from utils import update_seq, update_aatype, get_plddt, get_pae\n",
" import colabfold as cf\n",
" from alphafold.common import protein as alphafold_protein\n",
" from alphafold.data import pipeline\n",
" from alphafold.model import data, config\n",
" from alphafold.common import residue_constants\n",
" from alphafold.model import model as alphafold_model\n",
"\n",
"# custom functions\n",
"def clear_mem():\n",
" backend = jax.lib.xla_bridge.get_backend()\n",
" for buf in backend.live_buffers(): buf.delete()\n",
"\n",
"def setup_model(max_len):\n",
" clear_mem()\n",
"\n",
" # setup model\n",
" cfg = config.model_config(\"model_3_ptm\")\n",
" cfg.model.num_recycle = 0\n",
" cfg.data.common.num_recycle = 0\n",
" cfg.data.eval.max_msa_clusters = 1\n",
" cfg.data.common.max_extra_msa = 1\n",
" cfg.data.eval.masked_msa_replace_fraction = 0\n",
" cfg.model.global_config.subbatch_size = None\n",
"\n",
" # get params\n",
" model_param = data.get_model_haiku_params(model_name=\"model_3_ptm\", data_dir=\".\")\n",
" model_runner = alphafold_model.RunModel(cfg, model_param, is_training=False, recycle_mode=\"none\")\n",
"\n",
" model_params = []\n",
" for k in [1,2,3,4,5]:\n",
" if k == 3:\n",
" model_params.append(model_param)\n",
" else:\n",
" params = data.get_model_haiku_params(model_name=f\"model_{k}_ptm\", data_dir=\".\")\n",
" model_params.append({k: params[k] for k in model_runner.params.keys()})\n",
"\n",
" seq = \"A\" * max_len\n",
" length = len(seq)\n",
" feature_dict = {\n",
" **pipeline.make_sequence_features(sequence=seq, description=\"none\", num_res=length),\n",
" **pipeline.make_msa_features(msas=[[seq]], deletion_matrices=[[[0]*length]])\n",
" }\n",
" inputs = model_runner.process_features(feature_dict,random_seed=0)\n",
"\n",
" def runner(I, params):\n",
" # update sequence\n",
" inputs = I[\"inputs\"]\n",
" inputs.update(I[\"prev\"])\n",
"\n",
" seq = jax.nn.one_hot(I[\"seq\"],20)\n",
" update_seq(seq, inputs)\n",
" update_aatype(inputs[\"target_feat\"][...,1:], inputs)\n",
"\n",
" # mask prediction\n",
" mask = jnp.arange(inputs[\"residue_index\"].shape[0]) < I[\"length\"]\n",
" inputs[\"seq_mask\"] = inputs[\"seq_mask\"].at[:].set(mask)\n",
" inputs[\"msa_mask\"] = inputs[\"msa_mask\"].at[:].set(mask)\n",
" inputs[\"residue_index\"] = jnp.where(mask, inputs[\"residue_index\"], 0)\n",
"\n",
" # get prediction\n",
" key = jax.random.PRNGKey(0)\n",
" outputs = model_runner.apply(params, key, inputs)\n",
"\n",
" prev = {\"init_msa_first_row\":outputs['representations']['msa_first_row'][None],\n",
" \"init_pair\":outputs['representations']['pair'][None],\n",
" \"init_pos\":outputs['structure_module']['final_atom_positions'][None]}\n",
" \n",
" aux = {\"final_atom_positions\":outputs[\"structure_module\"][\"final_atom_positions\"],\n",
" \"final_atom_mask\":outputs[\"structure_module\"][\"final_atom_mask\"],\n",
" \"plddt\":get_plddt(outputs),\"pae\":get_pae(outputs),\n",
" \"length\":I[\"length\"], \"seq\":I[\"seq\"], \"prev\":prev,\n",
" \"residue_idx\":inputs[\"residue_index\"][0]}\n",
" return aux\n",
"\n",
" return jax.jit(runner), model_params, {\"inputs\":inputs, \"length\":max_length}\n",
"\n",
"def save_pdb(outs, filename, Ls=None):\n",
" '''save pdb coordinates'''\n",
" p = {\"residue_index\":outs[\"residue_idx\"] + 1,\n",
" \"aatype\":outs[\"seq\"],\n",
" \"atom_positions\":outs[\"final_atom_positions\"],\n",
" \"atom_mask\":outs[\"final_atom_mask\"],\n",
" \"plddt\":outs[\"plddt\"]}\n",
" p = jax.tree_map(lambda x:x[:outs[\"length\"]], p)\n",
" b_factors = 100 * p.pop(\"plddt\")[:,None] * p[\"atom_mask\"]\n",
" p = alphafold_protein.Protein(**p,b_factors=b_factors)\n",
" pdb_lines = alphafold_protein.to_pdb(p)\n",
" with open(filename, 'w') as f:\n",
" f.write(pdb_lines)\n",
" if Ls is not None:\n",
" pdb_lines = cf.read_pdb_renum(filename, Ls)\n",
" with open(filename, 'w') as f:\n",
" f.write(pdb_lines)"
],
"metadata": {
"cellView": "form",
"id": "4ZBUThXU7yY8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title Run AlphaFold\n",
"num_models = 1 #@param [\"1\",\"2\",\"3\",\"4\",\"5\"] {type:\"raw\"}\n",
"num_recycles = 1 #@param [\"0\",\"1\",\"2\",\"3\"] {type:\"raw\"}\n",
"num_sequences = len(sequences)\n",
"outs = []\n",
"positions = []\n",
"plddts = []\n",
"paes = []\n",
"LS = []\n",
"\n",
"with tqdm.notebook.tqdm(total=(num_recycles + 1) * num_models * num_sequences, bar_format=TQDM_BAR_FORMAT) as pbar:\n",
" print(f\"seq_num model_num avg_pLDDT avg_pAE TMscore\")\n",
" for s,ori_sequence in enumerate(sequences):\n",
" Ls = [len(s) for s in ori_sequence.replace(\":\",\"/\").split(\"/\")]\n",
" LS.append(Ls)\n",
" sequence = re.sub(\"[^A-Z]\",\"\",ori_sequence)\n",
" length = len(sequence)\n",
"\n",
" # avoid recompiling if length within 25\n",
" if \"max_len\" not in dir() or length > max_len or (max_len - length) > 25:\n",
" max_len = length + 25\n",
" runner, params, I = setup_model(max_len)\n",
"\n",
" outs.append([])\n",
" positions.append([])\n",
" plddts.append([])\n",
" paes.append([])\n",
"\n",
" r = -1\n",
" # pad sequence to max length\n",
" seq = np.array([residue_constants.restype_order.get(aa,0) for aa in sequence])\n",
" seq = np.pad(seq,[0,max_len-length],constant_values=-1)\n",
" I[\"inputs\"]['residue_index'][:] = cf.chain_break(np.arange(max_len), Ls, length=32)\n",
" I.update({\"seq\":seq, \"length\":length})\n",
" \n",
" # for each model\n",
" for n in range(num_models):\n",
" # restart recycle\n",
" I[\"prev\"] = {'init_msa_first_row': np.zeros([1, max_len, 256]),\n",
" 'init_pair': np.zeros([1, max_len, max_len, 128]),\n",
" 'init_pos': np.zeros([1, max_len, 37, 3])}\n",
" for r in range(num_recycles + 1):\n",
" O = runner(I, params[n])\n",
" O = jax.tree_map(lambda x:np.asarray(x), O)\n",
" I[\"prev\"] = O[\"prev\"]\n",
" pbar.update(1)\n",
" \n",
" positions[-1].append(O[\"final_atom_positions\"][:length])\n",
" plddts[-1].append(O[\"plddt\"][:length])\n",
" paes[-1].append(O[\"pae\"][:length,:length])\n",
" outs[-1].append(O)\n",
" save_pdb(outs[-1][-1], f\"out_seq_{s}_model_{n}.pdb\", Ls=LS[-1])\n",
" tmscores = mmalign(pdb_path, f\"out_seq_{s}_model_{n}.pdb\")\n",
" print(f\"{s} {n}\\t{plddts[-1][-1].mean():.3}\\t{paes[-1][-1].mean():.3}\\t{tmscores[-1]:.3}\")"
],
"metadata": {
"cellView": "form",
"id": "p2uNokqudTSH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title Display 3D structure {run: \"auto\"}\n",
"#@markdown #### select which sequence to show (if more than one designed example)\n",
"seq_num = 0 #@param [\"0\",\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\"] {type:\"raw\"}\n",
"assert seq_num < len(outs), f\"ERROR: seq_num ({seq_num}) exceeds number of designed sequences ({num_sequences})\"\n",
"model_num = 0 #@param [\"0\",\"1\",\"2\",\"3\",\"4\"] {type:\"raw\"}\n",
"assert model_num < len(outs[0]), f\"ERROR: model_num ({num_models}) exceeds number of model params used ({num_models})\"\n",
"#@markdown #### options\n",
"\n",
"color = \"confidence\" #@param [\"chain\", \"confidence\", \"rainbow\"]\n",
"if color == \"confidence\": color = \"lDDT\"\n",
"show_sidechains = False #@param {type:\"boolean\"}\n",
"show_mainchains = False #@param {type:\"boolean\"}\n",
"\n",
"v = cf.show_pdb(f\"out_seq_{seq_num}_model_{model_num}.pdb\", show_sidechains, show_mainchains, color,\n",
" color_HP=True, size=(800,480), Ls=LS[seq_num]) \n",
"v.setHoverable({}, True,\n",
" '''function(atom,viewer,event,container){if(!atom.label){atom.label=viewer.addLabel(\" \"+atom.resn+\":\"+atom.resi,{position:atom,backgroundColor:'mintcream',fontColor:'black'});}}''',\n",
" '''function(atom,viewer){if(atom.label){viewer.removeLabel(atom.label);delete atom.label;}}''')\n",
"v.show() \n",
"if color == \"lDDT\":\n",
" cf.plot_plddt_legend().show()\n",
"\n",
"# add confidence plots\n",
"cf.plot_confidence(plddts[seq_num][model_num]*100, paes[seq_num][model_num], Ls=LS[seq_num]).show()"
],
"metadata": {
"cellView": "form",
"id": "0TNhcwok8d_w"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"colab": {
"name": "quickdemo_wAF2.ipynb",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"gpuClass": "standard"
},
"nbformat": 4,
"nbformat_minor": 0
} |