File size: 22,614 Bytes
8c639ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
"""
https://github.com/ProteinDesignLab/protpardelle
License: MIT
Author: Alex Chu

Neural network modules. Many of these are adapted from open source modules.
"""
from typing import List, Sequence, Optional

from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
import numpy as np
from rotary_embedding_torch import RotaryEmbedding
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, EsmModel

from core import protein_mpnn
from core import residue_constants
from core import utils


########################################
# Adapted from https://github.com/ermongroup/ddim


def downsample(x):
    return nn.functional.avg_pool2d(x, 2, 2, ceil_mode=True)


def upsample_coords(x, shape):
    new_l, new_w = shape
    return nn.functional.interpolate(x, size=(new_l, new_w), mode="nearest")


########################################
# Adapted from https://github.com/aqlaboratory/openfold


def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
    zero_index = -1 * len(inds)
    first_inds = list(range(len(tensor.shape[:zero_index])))
    return tensor.contiguous().permute(first_inds + [zero_index + i for i in inds])


def lddt(
    all_atom_pred_pos: torch.Tensor,
    all_atom_positions: torch.Tensor,
    all_atom_mask: torch.Tensor,
    cutoff: float = 15.0,
    eps: float = 1e-10,
    per_residue: bool = True,
) -> torch.Tensor:
    n = all_atom_mask.shape[-2]
    dmat_true = torch.sqrt(
        eps
        + torch.sum(
            (all_atom_positions[..., None, :] - all_atom_positions[..., None, :, :])
            ** 2,
            dim=-1,
        )
    )

    dmat_pred = torch.sqrt(
        eps
        + torch.sum(
            (all_atom_pred_pos[..., None, :] - all_atom_pred_pos[..., None, :, :]) ** 2,
            dim=-1,
        )
    )
    dists_to_score = (
        (dmat_true < cutoff)
        * all_atom_mask
        * permute_final_dims(all_atom_mask, (1, 0))
        * (1.0 - torch.eye(n, device=all_atom_mask.device))
    )

    dist_l1 = torch.abs(dmat_true - dmat_pred)

    score = (
        (dist_l1 < 0.5).type(dist_l1.dtype)
        + (dist_l1 < 1.0).type(dist_l1.dtype)
        + (dist_l1 < 2.0).type(dist_l1.dtype)
        + (dist_l1 < 4.0).type(dist_l1.dtype)
    )
    score = score * 0.25

    dims = (-1,) if per_residue else (-2, -1)
    norm = 1.0 / (eps + torch.sum(dists_to_score, dim=dims))
    score = norm * (eps + torch.sum(dists_to_score * score, dim=dims))

    return score


class RelativePositionalEncoding(nn.Module):
    def __init__(self, attn_dim=8, max_rel_idx=32):
        super().__init__()
        self.max_rel_idx = max_rel_idx
        self.n_rel_pos = 2 * self.max_rel_idx + 1
        self.linear = nn.Linear(self.n_rel_pos, attn_dim)

    def forward(self, residue_index):
        d_ij = residue_index[..., None] - residue_index[..., None, :]
        v_bins = torch.arange(self.n_rel_pos).to(d_ij.device) - self.max_rel_idx
        idxs = (d_ij[..., None] - v_bins[None, None]).abs().argmin(-1)
        p_ij = nn.functional.one_hot(idxs, num_classes=self.n_rel_pos)
        embeddings = self.linear(p_ij.float())
        return embeddings


########################################
# Adapted from https://github.com/NVlabs/edm


class Noise_Embedding(nn.Module):
    def __init__(self, num_channels, max_positions=10000, endpoint=False):
        super().__init__()
        self.num_channels = num_channels
        self.max_positions = max_positions
        self.endpoint = endpoint

    def forward(self, x):
        freqs = torch.arange(
            start=0, end=self.num_channels // 2, dtype=torch.float32, device=x.device
        )
        freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0))
        freqs = (1 / self.max_positions) ** freqs
        x = x.outer(freqs.to(x.dtype))
        x = torch.cat([x.cos(), x.sin()], dim=1)
        return x


########################################
# Adapted from github.com/lucidrains
# https://github.com/lucidrains/denoising-diffusion-pytorch
# https://github.com/lucidrains/recurrent-interface-network-pytorch


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d


def posemb_sincos_1d(patches, temperature=10000, residue_index=None):
    _, n, dim, device, dtype = *patches.shape, patches.device, patches.dtype

    n = torch.arange(n, device=device) if residue_index is None else residue_index
    assert (dim % 2) == 0, "feature dimension must be multiple of 2 for sincos emb"
    omega = torch.arange(dim // 2, device=device) / (dim // 2 - 1)
    omega = 1.0 / (temperature**omega)

    n = n[..., None] * omega
    pe = torch.cat((n.sin(), n.cos()), dim=-1)
    return pe.type(dtype)


class LayerNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(dim))
        self.register_buffer("beta", torch.zeros(dim))

    def forward(self, x):
        return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)


class NoiseConditioningBlock(nn.Module):
    def __init__(self, n_in_channel, n_out_channel):
        super().__init__()
        self.block = nn.Sequential(
            Noise_Embedding(n_in_channel),
            nn.Linear(n_in_channel, n_out_channel),
            nn.SiLU(),
            nn.Linear(n_out_channel, n_out_channel),
            Rearrange("b d -> b 1 d"),
        )

    def forward(self, noise_level):
        return self.block(noise_level)


class TimeCondResnetBlock(nn.Module):
    def __init__(
        self, nic, noc, cond_nc, conv_layer=nn.Conv2d, dropout=0.1, n_norm_in_groups=4
    ):
        super().__init__()
        self.block1 = nn.Sequential(
            nn.GroupNorm(num_groups=nic // n_norm_in_groups, num_channels=nic),
            nn.SiLU(),
            conv_layer(nic, noc, 3, 1, 1),
        )
        self.cond_proj = nn.Linear(cond_nc, noc * 2)
        self.mid_norm = nn.GroupNorm(num_groups=noc // 4, num_channels=noc)
        self.dropout = dropout if dropout is None else nn.Dropout(dropout)
        self.block2 = nn.Sequential(
            nn.GroupNorm(num_groups=noc // 4, num_channels=noc),
            nn.SiLU(),
            conv_layer(noc, noc, 3, 1, 1),
        )
        self.mismatch = False
        if nic != noc:
            self.mismatch = True
            self.conv_match = conv_layer(nic, noc, 1, 1, 0)

    def forward(self, x, time=None):
        h = self.block1(x)

        if time is not None:
            h = self.mid_norm(h)
            scale, shift = self.cond_proj(time).chunk(2, dim=-1)
            h = (h * (utils.expand(scale, h) + 1)) + utils.expand(shift, h)

        if self.dropout is not None:
            h = self.dropout(h)

        h = self.block2(h)

        if self.mismatch:
            x = self.conv_match(x)

        return x + h


class TimeCondAttention(nn.Module):
    def __init__(
        self,
        dim,
        dim_context=None,
        heads=4,
        dim_head=32,
        norm=False,
        norm_context=False,
        time_cond_dim=None,
        attn_bias_dim=None,
        rotary_embedding_module=None,
    ):
        super().__init__()
        hidden_dim = dim_head * heads
        dim_context = default(dim_context, dim)

        self.time_cond = None

        if exists(time_cond_dim):
            self.time_cond = nn.Sequential(nn.SiLU(), nn.Linear(time_cond_dim, dim * 2))

            nn.init.zeros_(self.time_cond[-1].weight)
            nn.init.zeros_(self.time_cond[-1].bias)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.norm = LayerNorm(dim) if norm else nn.Identity()
        self.norm_context = LayerNorm(dim_context) if norm_context else nn.Identity()

        self.attn_bias_proj = None
        if attn_bias_dim is not None:
            self.attn_bias_proj = nn.Sequential(
                Rearrange("b a i j -> b i j a"),
                nn.Linear(attn_bias_dim, heads),
                Rearrange("b i j a -> b a i j"),
            )

        self.to_q = nn.Linear(dim, hidden_dim, bias=False)
        self.to_kv = nn.Linear(dim_context, hidden_dim * 2, bias=False)
        self.to_out = nn.Linear(hidden_dim, dim, bias=False)
        nn.init.zeros_(self.to_out.weight)

        self.use_rope = False
        if rotary_embedding_module is not None:
            self.use_rope = True
            self.rope = rotary_embedding_module

    def forward(self, x, context=None, time=None, attn_bias=None, seq_mask=None):
        # attn_bias is b, c, i, j
        h = self.heads
        has_context = exists(context)

        context = default(context, x)

        if x.shape[-1] != self.norm.gamma.shape[-1]:
            print(context.shape, x.shape, self.norm.gamma.shape)

        x = self.norm(x)

        if exists(time):
            scale, shift = self.time_cond(time).chunk(2, dim=-1)
            x = (x * (scale + 1)) + shift

        if has_context:
            context = self.norm_context(context)

        if seq_mask is not None:
            x = x * seq_mask[..., None]

        qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), qkv)

        q = q * self.scale

        if self.use_rope:
            q = self.rope.rotate_queries_or_keys(q)
            k = self.rope.rotate_queries_or_keys(k)

        sim = torch.einsum("b h i d, b h j d -> b h i j", q, k)
        if attn_bias is not None:
            if self.attn_bias_proj is not None:
                attn_bias = self.attn_bias_proj(attn_bias)
            sim += attn_bias
        if seq_mask is not None:
            attn_mask = torch.einsum("b i, b j -> b i j", seq_mask, seq_mask)[:, None]
            sim -= (1 - attn_mask) * 1e6
        attn = sim.softmax(dim=-1)

        out = torch.einsum("b h i j, b h j d -> b h i d", attn, v)
        out = rearrange(out, "b h n d -> b n (h d)")
        out = self.to_out(out)
        if seq_mask is not None:
            out = out * seq_mask[..., None]
        return out


class TimeCondFeedForward(nn.Module):
    def __init__(self, dim, mult=4, dim_out=None, time_cond_dim=None, dropout=0.1):
        super().__init__()
        if dim_out is None:
            dim_out = dim
        self.norm = LayerNorm(dim)

        self.time_cond = None
        self.dropout = None
        inner_dim = int(dim * mult)

        if exists(time_cond_dim):
            self.time_cond = nn.Sequential(
                nn.SiLU(),
                nn.Linear(time_cond_dim, inner_dim * 2),
            )

            nn.init.zeros_(self.time_cond[-1].weight)
            nn.init.zeros_(self.time_cond[-1].bias)

        self.linear_in = nn.Linear(dim, inner_dim)
        self.nonlinearity = nn.SiLU()
        if dropout is not None:
            self.dropout = nn.Dropout(dropout)
        self.linear_out = nn.Linear(inner_dim, dim_out)
        nn.init.zeros_(self.linear_out.weight)
        nn.init.zeros_(self.linear_out.bias)

    def forward(self, x, time=None):
        x = self.norm(x)
        x = self.linear_in(x)
        x = self.nonlinearity(x)

        if exists(time):
            scale, shift = self.time_cond(time).chunk(2, dim=-1)
            x = (x * (scale + 1)) + shift

        if exists(self.dropout):
            x = self.dropout(x)

        return self.linear_out(x)


class TimeCondTransformer(nn.Module):
    def __init__(
        self,
        dim,
        depth,
        heads,
        dim_head,
        time_cond_dim,
        attn_bias_dim=None,
        mlp_inner_dim_mult=4,
        position_embedding_type: str = "rotary",
    ):
        super().__init__()

        self.rope = None
        self.pos_emb_type = position_embedding_type
        if position_embedding_type == "rotary":
            self.rope = RotaryEmbedding(dim=32)
        elif position_embedding_type == "relative":
            self.relpos = nn.Sequential(
                RelativePositionalEncoding(attn_dim=heads),
                Rearrange("b i j d -> b d i j"),
            )

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        TimeCondAttention(
                            dim,
                            heads=heads,
                            dim_head=dim_head,
                            norm=True,
                            time_cond_dim=time_cond_dim,
                            attn_bias_dim=attn_bias_dim,
                            rotary_embedding_module=self.rope,
                        ),
                        TimeCondFeedForward(
                            dim, mlp_inner_dim_mult, time_cond_dim=time_cond_dim
                        ),
                    ]
                )
            )

    def forward(
        self,
        x,
        time=None,
        attn_bias=None,
        context=None,
        seq_mask=None,
        residue_index=None,
    ):
        if self.pos_emb_type == "absolute":
            pos_emb = posemb_sincos_1d(x)
            x = x + pos_emb
        elif self.pos_emb_type == "absolute_residx":
            assert residue_index is not None
            pos_emb = posemb_sincos_1d(x, residue_index=residue_index)
            x = x + pos_emb
        elif self.pos_emb_type == "relative":
            assert residue_index is not None
            pos_emb = self.relpos(residue_index)
            attn_bias = pos_emb if attn_bias is None else attn_bias + pos_emb
        if seq_mask is not None:
            x = x * seq_mask[..., None]

        for i, (attn, ff) in enumerate(self.layers):
            x = x + attn(
                x, context=context, time=time, attn_bias=attn_bias, seq_mask=seq_mask
            )
            x = x + ff(x, time=time)
            if seq_mask is not None:
                x = x * seq_mask[..., None]

        return x


class TimeCondUViT(nn.Module):
    def __init__(
        self,
        *,
        seq_len: int,
        dim: int,
        patch_size: int = 1,
        depth: int = 6,
        heads: int = 8,
        dim_head: int = 32,
        n_filt_per_layer: List[int] = [],
        n_blocks_per_layer: int = 2,
        n_atoms: int = 37,
        channels_per_atom: int = 6,
        attn_bias_dim: int = None,
        time_cond_dim: int = None,
        conv_skip_connection: bool = False,
        position_embedding_type: str = "rotary",
    ):
        super().__init__()

        # Initialize configuration params
        if time_cond_dim is None:
            time_cond_dim = dim * 4
        self.position_embedding_type = position_embedding_type
        channels = channels_per_atom
        self.n_conv_layers = n_conv_layers = len(n_filt_per_layer)
        if n_conv_layers > 0:
            post_conv_filt = n_filt_per_layer[-1]
        self.conv_skip_connection = conv_skip_connection and n_conv_layers == 1
        transformer_seq_len = seq_len // (2**n_conv_layers)
        assert transformer_seq_len % patch_size == 0
        num_patches = transformer_seq_len // patch_size
        dim_a = post_conv_atom_dim = max(1, n_atoms // (2 ** (n_conv_layers - 1)))
        if n_conv_layers == 0:
            patch_dim = patch_size * n_atoms * channels_per_atom
            patch_dim_out = patch_size * n_atoms * 3
            dim_a = n_atoms
        elif conv_skip_connection and n_conv_layers == 1:
            patch_dim = patch_size * (channels + post_conv_filt) * post_conv_atom_dim
            patch_dim_out = patch_size * post_conv_filt * post_conv_atom_dim
        elif n_conv_layers > 0:
            patch_dim = patch_dim_out = patch_size * post_conv_filt * post_conv_atom_dim

        # Make downsampling conv
        # Downsamples n-1 times where n is n_conv_layers
        down_conv = []
        block_in = channels
        for i, nf in enumerate(n_filt_per_layer):
            block_out = nf
            layer = []
            for j in range(n_blocks_per_layer):
                n_groups = 2 if i == 0 and j == 0 else 4
                layer.append(
                    TimeCondResnetBlock(
                        block_in, block_out, time_cond_dim, n_norm_in_groups=n_groups
                    )
                )
                block_in = block_out
            down_conv.append(nn.ModuleList(layer))
        self.down_conv = nn.ModuleList(down_conv)

        # Make transformer
        self.to_patch_embedding = nn.Sequential(
            Rearrange("b c (n p) a -> b n (p c a)", p=patch_size),
            nn.Linear(patch_dim, dim),
            LayerNorm(dim),
        )
        self.transformer = TimeCondTransformer(
            dim,
            depth,
            heads,
            dim_head,
            time_cond_dim,
            attn_bias_dim=attn_bias_dim,
            position_embedding_type=position_embedding_type,
        )
        self.from_patch = nn.Sequential(
            LayerNorm(dim),
            nn.Linear(dim, patch_dim_out),
            Rearrange("b n (p c a) -> b c (n p) a", p=patch_size, a=dim_a),
        )
        nn.init.zeros_(self.from_patch[-2].weight)
        nn.init.zeros_(self.from_patch[-2].bias)

        # Make upsampling conv
        up_conv = []
        for i, nf in enumerate(reversed(n_filt_per_layer)):
            skip_in = nf
            block_out = nf
            layer = []
            for j in range(n_blocks_per_layer):
                layer.append(
                    TimeCondResnetBlock(block_in + skip_in, block_out, time_cond_dim)
                )
                block_in = block_out
            up_conv.append(nn.ModuleList(layer))
        self.up_conv = nn.ModuleList(up_conv)

        # Conv out
        if n_conv_layers > 0:
            self.conv_out = nn.Sequential(
                nn.GroupNorm(num_groups=block_out // 4, num_channels=block_out),
                nn.SiLU(),
                nn.Conv2d(block_out, channels // 2, 3, 1, 1),
            )

    def forward(
        self, coords, time_cond, pair_bias=None, seq_mask=None, residue_index=None
    ):
        if self.n_conv_layers > 0:  # pad up to even dims
            coords = F.pad(coords, (0, 0, 0, 0, 0, 1, 0, 0))

        x = rearr_coords = rearrange(coords, "b n a c -> b c n a")
        hiddens = []
        for i, layer in enumerate(self.down_conv):
            for block in layer:
                x = block(x, time=time_cond)
                hiddens.append(x)
            if i != self.n_conv_layers - 1:
                x = downsample(x)

        if self.conv_skip_connection:
            x = torch.cat([x, rearr_coords], 1)

        x = self.to_patch_embedding(x)
        # if self.position_embedding_type == 'absolute':
        #     pos_emb = posemb_sincos_1d(x)
        #     x = x + pos_emb
        if seq_mask is not None and x.shape[1] == seq_mask.shape[1]:
            x *= seq_mask[..., None]
        x = self.transformer(
            x,
            time=time_cond,
            attn_bias=pair_bias,
            seq_mask=seq_mask,
            residue_index=residue_index,
        )
        x = self.from_patch(x)

        for i, layer in enumerate(self.up_conv):
            for block in layer:
                x = torch.cat([x, hiddens.pop()], 1)
                x = block(x, time=time_cond)
            if i != self.n_conv_layers - 1:
                x = upsample_coords(x, hiddens[-1].shape[2:])

        if self.n_conv_layers > 0:
            x = self.conv_out(x)
            x = x[..., :-1, :]  # drop even-dims padding

        x = rearrange(x, "b c n a -> b n a c")
        return x


########################################


class LinearWarmupCosineDecay(torch.optim.lr_scheduler._LRScheduler):
    def __init__(
        self,
        optimizer,
        max_lr,
        warmup_steps=1000,
        decay_steps=int(1e6),
        min_lr=1e-6,
        **kwargs,
    ):
        self.max_lr = max_lr
        self.min_lr = min_lr
        self.warmup_steps = warmup_steps
        self.decay_steps = decay_steps
        self.total_steps = warmup_steps + decay_steps
        super(LinearWarmupCosineDecay, self).__init__(optimizer, **kwargs)

    def get_lr(self):
        # TODO double check for off-by-one errors
        if self.last_epoch < self.warmup_steps:
            curr_lr = self.last_epoch / self.warmup_steps * self.max_lr
            return [curr_lr for group in self.optimizer.param_groups]
        elif self.last_epoch < self.total_steps:
            time = (self.last_epoch - self.warmup_steps) / self.decay_steps * np.pi
            curr_lr = self.min_lr + (self.max_lr - self.min_lr) * 0.5 * (
                1 + np.cos(time)
            )
            return [curr_lr for group in self.optimizer.param_groups]
        else:
            return [self.min_lr for group in self.optimizer.param_groups]


class NoiseConditionalProteinMPNN(nn.Module):
    def __init__(
        self,
        n_channel=128,
        n_layers=3,
        n_neighbors=32,
        time_cond_dim=None,
        vocab_size=21,
        input_S_is_embeddings=False,
    ):
        super().__init__()
        self.n_channel = n_channel
        self.n_layers = n_layers
        self.n_neighbors = n_neighbors
        self.time_cond_dim = time_cond_dim
        self.vocab_size = vocab_size
        self.bb_idxs_if_atom37 = [
            residue_constants.atom_order[a] for a in ["N", "CA", "C", "O"]
        ]

        self.mpnn = protein_mpnn.ProteinMPNN(
            num_letters=vocab_size,
            node_features=n_channel,
            edge_features=n_channel,
            hidden_dim=n_channel,
            num_encoder_layers=n_layers,
            num_decoder_layers=n_layers,
            vocab=vocab_size,
            k_neighbors=n_neighbors,
            augment_eps=0.0,
            dropout=0.1,
            ca_only=False,
            time_cond_dim=time_cond_dim,
            input_S_is_embeddings=input_S_is_embeddings,
        )

    def forward(
        self, denoised_coords, noisy_aatype, seq_mask, residue_index, time_cond
    ):
        if denoised_coords.shape[-2] == 37:
            denoised_coords = denoised_coords[:, :, self.bb_idxs_if_atom37]

        node_embs, encoder_embs = self.mpnn(
            X=denoised_coords,
            S=noisy_aatype,
            mask=seq_mask,
            chain_M=seq_mask,
            residue_idx=residue_index,
            chain_encoding_all=seq_mask,
            randn=None,
            use_input_decoding_order=False,
            decoding_order=None,
            causal_mask=False,
            time_cond=time_cond,
            return_node_embs=True,
        )
        return node_embs, encoder_embs