Spaces:
Sleeping
Sleeping
File size: 63,491 Bytes
00aa807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 |
from __future__ import print_function
import json, time, os, sys, glob
import shutil
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import itertools
#A number of functions/classes are adopted from: https://github.com/jingraham/neurips19-graph-protein-design
def parse_fasta(filename,limit=-1, omit=[]):
header = []
sequence = []
lines = open(filename, "r")
for line in lines:
line = line.rstrip()
if line[0] == ">":
if len(header) == limit:
break
header.append(line[1:])
sequence.append([])
else:
if omit:
line = [item for item in line if item not in omit]
line = ''.join(line)
line = ''.join(line)
sequence[-1].append(line)
lines.close()
sequence = [''.join(seq) for seq in sequence]
return np.array(header), np.array(sequence)
def _scores(S, log_probs, mask):
""" Negative log probabilities """
criterion = torch.nn.NLLLoss(reduction='none')
loss = criterion(
log_probs.contiguous().view(-1,log_probs.size(-1)),
S.contiguous().view(-1)
).view(S.size())
scores = torch.sum(loss * mask, dim=-1) / torch.sum(mask, dim=-1)
return scores
def _S_to_seq(S, mask):
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
seq = ''.join([alphabet[c] for c, m in zip(S.tolist(), mask.tolist()) if m > 0])
return seq
def parse_PDB_biounits(x, atoms=['N','CA','C'], chain=None):
'''
input: x = PDB filename
atoms = atoms to extract (optional)
output: (length, atoms, coords=(x,y,z)), sequence
'''
alpha_1 = list("ARNDCQEGHILKMFPSTWYV-")
states = len(alpha_1)
alpha_3 = ['ALA','ARG','ASN','ASP','CYS','GLN','GLU','GLY','HIS','ILE',
'LEU','LYS','MET','PHE','PRO','SER','THR','TRP','TYR','VAL','GAP']
aa_1_N = {a:n for n,a in enumerate(alpha_1)}
aa_3_N = {a:n for n,a in enumerate(alpha_3)}
aa_N_1 = {n:a for n,a in enumerate(alpha_1)}
aa_1_3 = {a:b for a,b in zip(alpha_1,alpha_3)}
aa_3_1 = {b:a for a,b in zip(alpha_1,alpha_3)}
def AA_to_N(x):
# ["ARND"] -> [[0,1,2,3]]
x = np.array(x);
if x.ndim == 0: x = x[None]
return [[aa_1_N.get(a, states-1) for a in y] for y in x]
def N_to_AA(x):
# [[0,1,2,3]] -> ["ARND"]
x = np.array(x);
if x.ndim == 1: x = x[None]
return ["".join([aa_N_1.get(a,"-") for a in y]) for y in x]
xyz,seq,min_resn,max_resn = {},{},1e6,-1e6
for line in open(x,"rb"):
line = line.decode("utf-8","ignore").rstrip()
if line[:6] == "HETATM" and line[17:17+3] == "MSE":
line = line.replace("HETATM","ATOM ")
line = line.replace("MSE","MET")
if line[:4] == "ATOM":
ch = line[21:22]
if ch == chain or chain is None:
atom = line[12:12+4].strip()
resi = line[17:17+3]
resn = line[22:22+5].strip()
x,y,z = [float(line[i:(i+8)]) for i in [30,38,46]]
if resn[-1].isalpha():
resa,resn = resn[-1],int(resn[:-1])-1
else:
resa,resn = "",int(resn)-1
# resn = int(resn)
if resn < min_resn:
min_resn = resn
if resn > max_resn:
max_resn = resn
if resn not in xyz:
xyz[resn] = {}
if resa not in xyz[resn]:
xyz[resn][resa] = {}
if resn not in seq:
seq[resn] = {}
if resa not in seq[resn]:
seq[resn][resa] = resi
if atom not in xyz[resn][resa]:
xyz[resn][resa][atom] = np.array([x,y,z])
# convert to numpy arrays, fill in missing values
seq_,xyz_ = [],[]
try:
for resn in range(min_resn,max_resn+1):
if resn in seq:
for k in sorted(seq[resn]): seq_.append(aa_3_N.get(seq[resn][k],20))
else: seq_.append(20)
if resn in xyz:
for k in sorted(xyz[resn]):
for atom in atoms:
if atom in xyz[resn][k]: xyz_.append(xyz[resn][k][atom])
else: xyz_.append(np.full(3,np.nan))
else:
for atom in atoms: xyz_.append(np.full(3,np.nan))
return np.array(xyz_).reshape(-1,len(atoms),3), N_to_AA(np.array(seq_))
except TypeError:
return 'no_chain', 'no_chain'
def parse_PDB(path_to_pdb, input_chain_list=None, ca_only=False):
c=0
pdb_dict_list = []
init_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G','H', 'I', 'J','K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T','U', 'V','W','X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g','h', 'i', 'j','k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't','u', 'v','w','x', 'y', 'z']
extra_alphabet = [str(item) for item in list(np.arange(300))]
chain_alphabet = init_alphabet + extra_alphabet
if input_chain_list:
chain_alphabet = input_chain_list
biounit_names = [path_to_pdb]
for biounit in biounit_names:
my_dict = {}
s = 0
concat_seq = ''
concat_N = []
concat_CA = []
concat_C = []
concat_O = []
concat_mask = []
coords_dict = {}
for letter in chain_alphabet:
if ca_only:
sidechain_atoms = ['CA']
else:
sidechain_atoms = ['N', 'CA', 'C', 'O']
xyz, seq = parse_PDB_biounits(biounit, atoms=sidechain_atoms, chain=letter)
if type(xyz) != str:
concat_seq += seq[0]
my_dict['seq_chain_'+letter]=seq[0]
coords_dict_chain = {}
if ca_only:
coords_dict_chain['CA_chain_'+letter]=xyz.tolist()
else:
coords_dict_chain['N_chain_' + letter] = xyz[:, 0, :].tolist()
coords_dict_chain['CA_chain_' + letter] = xyz[:, 1, :].tolist()
coords_dict_chain['C_chain_' + letter] = xyz[:, 2, :].tolist()
coords_dict_chain['O_chain_' + letter] = xyz[:, 3, :].tolist()
my_dict['coords_chain_'+letter]=coords_dict_chain
s += 1
fi = biounit.rfind("/")
my_dict['name']=biounit[(fi+1):-4]
my_dict['num_of_chains'] = s
my_dict['seq'] = concat_seq
if s <= len(chain_alphabet):
pdb_dict_list.append(my_dict)
c+=1
return pdb_dict_list
def tied_featurize(batch, device, chain_dict, fixed_position_dict=None, omit_AA_dict=None, tied_positions_dict=None, pssm_dict=None, bias_by_res_dict=None, ca_only=False):
""" Pack and pad batch into torch tensors """
alphabet = 'ACDEFGHIKLMNPQRSTVWYX'
B = len(batch)
lengths = np.array([len(b['seq']) for b in batch], dtype=np.int32) #sum of chain seq lengths
L_max = max([len(b['seq']) for b in batch])
if ca_only:
X = np.zeros([B, L_max, 1, 3])
else:
X = np.zeros([B, L_max, 4, 3])
residue_idx = -100*np.ones([B, L_max], dtype=np.int32)
chain_M = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
pssm_coef_all = np.zeros([B, L_max], dtype=np.float32) #1.0 for the bits that need to be predicted
pssm_bias_all = np.zeros([B, L_max, 21], dtype=np.float32) #1.0 for the bits that need to be predicted
pssm_log_odds_all = 10000.0*np.ones([B, L_max, 21], dtype=np.float32) #1.0 for the bits that need to be predicted
chain_M_pos = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
bias_by_res_all = np.zeros([B, L_max, 21], dtype=np.float32)
chain_encoding_all = np.zeros([B, L_max], dtype=np.int32) #1.0 for the bits that need to be predicted
S = np.zeros([B, L_max], dtype=np.int32)
omit_AA_mask = np.zeros([B, L_max, len(alphabet)], dtype=np.int32)
# Build the batch
letter_list_list = []
visible_list_list = []
masked_list_list = []
masked_chain_length_list_list = []
tied_pos_list_of_lists_list = []
for i, b in enumerate(batch):
if chain_dict != None:
masked_chains, visible_chains = chain_dict[b['name']] #masked_chains a list of chain letters to predict [A, D, F]
else:
masked_chains = [item[-1:] for item in list(b) if item[:10]=='seq_chain_']
visible_chains = []
masked_chains.sort() #sort masked_chains
visible_chains.sort() #sort visible_chains
all_chains = masked_chains + visible_chains
for i, b in enumerate(batch):
mask_dict = {}
a = 0
x_chain_list = []
chain_mask_list = []
chain_seq_list = []
chain_encoding_list = []
c = 1
letter_list = []
global_idx_start_list = [0]
visible_list = []
masked_list = []
masked_chain_length_list = []
fixed_position_mask_list = []
omit_AA_mask_list = []
pssm_coef_list = []
pssm_bias_list = []
pssm_log_odds_list = []
bias_by_res_list = []
l0 = 0
l1 = 0
for step, letter in enumerate(all_chains):
if letter in visible_chains:
letter_list.append(letter)
visible_list.append(letter)
chain_seq = b[f'seq_chain_{letter}']
chain_seq = ''.join([a if a!='-' else 'X' for a in chain_seq])
chain_length = len(chain_seq)
global_idx_start_list.append(global_idx_start_list[-1]+chain_length)
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
chain_mask = np.zeros(chain_length) #0.0 for visible chains
if ca_only:
x_chain = np.array(chain_coords[f'CA_chain_{letter}']) #[chain_lenght,1,3] #CA_diff
if len(x_chain.shape) == 2:
x_chain = x_chain[:,None,:]
else:
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
x_chain_list.append(x_chain)
chain_mask_list.append(chain_mask)
chain_seq_list.append(chain_seq)
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
l1 += chain_length
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
l0 += chain_length
c+=1
fixed_position_mask = np.ones(chain_length)
fixed_position_mask_list.append(fixed_position_mask)
omit_AA_mask_temp = np.zeros([chain_length, len(alphabet)], np.int32)
omit_AA_mask_list.append(omit_AA_mask_temp)
pssm_coef = np.zeros(chain_length)
pssm_bias = np.zeros([chain_length, 21])
pssm_log_odds = 10000.0*np.ones([chain_length, 21])
pssm_coef_list.append(pssm_coef)
pssm_bias_list.append(pssm_bias)
pssm_log_odds_list.append(pssm_log_odds)
bias_by_res_list.append(np.zeros([chain_length, 21]))
if letter in masked_chains:
masked_list.append(letter)
letter_list.append(letter)
chain_seq = b[f'seq_chain_{letter}']
chain_seq = ''.join([a if a!='-' else 'X' for a in chain_seq])
chain_length = len(chain_seq)
global_idx_start_list.append(global_idx_start_list[-1]+chain_length)
masked_chain_length_list.append(chain_length)
chain_coords = b[f'coords_chain_{letter}'] #this is a dictionary
chain_mask = np.ones(chain_length) #1.0 for masked
if ca_only:
x_chain = np.array(chain_coords[f'CA_chain_{letter}']) #[chain_lenght,1,3] #CA_diff
if len(x_chain.shape) == 2:
x_chain = x_chain[:,None,:]
else:
x_chain = np.stack([chain_coords[c] for c in [f'N_chain_{letter}', f'CA_chain_{letter}', f'C_chain_{letter}', f'O_chain_{letter}']], 1) #[chain_lenght,4,3]
x_chain_list.append(x_chain)
chain_mask_list.append(chain_mask)
chain_seq_list.append(chain_seq)
chain_encoding_list.append(c*np.ones(np.array(chain_mask).shape[0]))
l1 += chain_length
residue_idx[i, l0:l1] = 100*(c-1)+np.arange(l0, l1)
l0 += chain_length
c+=1
fixed_position_mask = np.ones(chain_length)
if fixed_position_dict!=None:
fixed_pos_list = fixed_position_dict[b['name']][letter]
if fixed_pos_list:
fixed_position_mask[np.array(fixed_pos_list)-1] = 0.0
fixed_position_mask_list.append(fixed_position_mask)
omit_AA_mask_temp = np.zeros([chain_length, len(alphabet)], np.int32)
if omit_AA_dict!=None:
for item in omit_AA_dict[b['name']][letter]:
idx_AA = np.array(item[0])-1
AA_idx = np.array([np.argwhere(np.array(list(alphabet))== AA)[0][0] for AA in item[1]]).repeat(idx_AA.shape[0])
idx_ = np.array([[a, b] for a in idx_AA for b in AA_idx])
omit_AA_mask_temp[idx_[:,0], idx_[:,1]] = 1
omit_AA_mask_list.append(omit_AA_mask_temp)
pssm_coef = np.zeros(chain_length)
pssm_bias = np.zeros([chain_length, 21])
pssm_log_odds = 10000.0*np.ones([chain_length, 21])
if pssm_dict:
if pssm_dict[b['name']][letter]:
pssm_coef = pssm_dict[b['name']][letter]['pssm_coef']
pssm_bias = pssm_dict[b['name']][letter]['pssm_bias']
pssm_log_odds = pssm_dict[b['name']][letter]['pssm_log_odds']
pssm_coef_list.append(pssm_coef)
pssm_bias_list.append(pssm_bias)
pssm_log_odds_list.append(pssm_log_odds)
if bias_by_res_dict:
bias_by_res_list.append(bias_by_res_dict[b['name']][letter])
else:
bias_by_res_list.append(np.zeros([chain_length, 21]))
letter_list_np = np.array(letter_list)
tied_pos_list_of_lists = []
tied_beta = np.ones(L_max)
if tied_positions_dict!=None:
tied_pos_list = tied_positions_dict[b['name']]
if tied_pos_list:
set_chains_tied = set(list(itertools.chain(*[list(item) for item in tied_pos_list])))
for tied_item in tied_pos_list:
one_list = []
for k, v in tied_item.items():
start_idx = global_idx_start_list[np.argwhere(letter_list_np == k)[0][0]]
if isinstance(v[0], list):
for v_count in range(len(v[0])):
one_list.append(start_idx+v[0][v_count]-1)#make 0 to be the first
tied_beta[start_idx+v[0][v_count]-1] = v[1][v_count]
else:
for v_ in v:
one_list.append(start_idx+v_-1)#make 0 to be the first
tied_pos_list_of_lists.append(one_list)
tied_pos_list_of_lists_list.append(tied_pos_list_of_lists)
x = np.concatenate(x_chain_list,0) #[L, 4, 3]
all_sequence = "".join(chain_seq_list)
m = np.concatenate(chain_mask_list,0) #[L,], 1.0 for places that need to be predicted
chain_encoding = np.concatenate(chain_encoding_list,0)
m_pos = np.concatenate(fixed_position_mask_list,0) #[L,], 1.0 for places that need to be predicted
pssm_coef_ = np.concatenate(pssm_coef_list,0) #[L,], 1.0 for places that need to be predicted
pssm_bias_ = np.concatenate(pssm_bias_list,0) #[L,], 1.0 for places that need to be predicted
pssm_log_odds_ = np.concatenate(pssm_log_odds_list,0) #[L,], 1.0 for places that need to be predicted
bias_by_res_ = np.concatenate(bias_by_res_list, 0) #[L,21], 0.0 for places where AA frequencies don't need to be tweaked
l = len(all_sequence)
x_pad = np.pad(x, [[0,L_max-l], [0,0], [0,0]], 'constant', constant_values=(np.nan, ))
X[i,:,:,:] = x_pad
m_pad = np.pad(m, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
m_pos_pad = np.pad(m_pos, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
omit_AA_mask_pad = np.pad(np.concatenate(omit_AA_mask_list,0), [[0,L_max-l]], 'constant', constant_values=(0.0, ))
chain_M[i,:] = m_pad
chain_M_pos[i,:] = m_pos_pad
omit_AA_mask[i,] = omit_AA_mask_pad
chain_encoding_pad = np.pad(chain_encoding, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
chain_encoding_all[i,:] = chain_encoding_pad
pssm_coef_pad = np.pad(pssm_coef_, [[0,L_max-l]], 'constant', constant_values=(0.0, ))
pssm_bias_pad = np.pad(pssm_bias_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
pssm_log_odds_pad = np.pad(pssm_log_odds_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
pssm_coef_all[i,:] = pssm_coef_pad
pssm_bias_all[i,:] = pssm_bias_pad
pssm_log_odds_all[i,:] = pssm_log_odds_pad
bias_by_res_pad = np.pad(bias_by_res_, [[0,L_max-l], [0,0]], 'constant', constant_values=(0.0, ))
bias_by_res_all[i,:] = bias_by_res_pad
# Convert to labels
indices = np.asarray([alphabet.index(a) for a in all_sequence], dtype=np.int32)
S[i, :l] = indices
letter_list_list.append(letter_list)
visible_list_list.append(visible_list)
masked_list_list.append(masked_list)
masked_chain_length_list_list.append(masked_chain_length_list)
isnan = np.isnan(X)
mask = np.isfinite(np.sum(X,(2,3))).astype(np.float32)
X[isnan] = 0.
# Conversion
pssm_coef_all = torch.from_numpy(pssm_coef_all).to(dtype=torch.float32, device=device)
pssm_bias_all = torch.from_numpy(pssm_bias_all).to(dtype=torch.float32, device=device)
pssm_log_odds_all = torch.from_numpy(pssm_log_odds_all).to(dtype=torch.float32, device=device)
tied_beta = torch.from_numpy(tied_beta).to(dtype=torch.float32, device=device)
jumps = ((residue_idx[:,1:]-residue_idx[:,:-1])==1).astype(np.float32)
bias_by_res_all = torch.from_numpy(bias_by_res_all).to(dtype=torch.float32, device=device)
phi_mask = np.pad(jumps, [[0,0],[1,0]])
psi_mask = np.pad(jumps, [[0,0],[0,1]])
omega_mask = np.pad(jumps, [[0,0],[0,1]])
dihedral_mask = np.concatenate([phi_mask[:,:,None], psi_mask[:,:,None], omega_mask[:,:,None]], -1) #[B,L,3]
dihedral_mask = torch.from_numpy(dihedral_mask).to(dtype=torch.float32, device=device)
residue_idx = torch.from_numpy(residue_idx).to(dtype=torch.long,device=device)
S = torch.from_numpy(S).to(dtype=torch.long,device=device)
X = torch.from_numpy(X).to(dtype=torch.float32, device=device)
mask = torch.from_numpy(mask).to(dtype=torch.float32, device=device)
chain_M = torch.from_numpy(chain_M).to(dtype=torch.float32, device=device)
chain_M_pos = torch.from_numpy(chain_M_pos).to(dtype=torch.float32, device=device)
omit_AA_mask = torch.from_numpy(omit_AA_mask).to(dtype=torch.float32, device=device)
chain_encoding_all = torch.from_numpy(chain_encoding_all).to(dtype=torch.long, device=device)
if ca_only:
X_out = X[:,:,0]
else:
X_out = X
return X_out, S, mask, lengths, chain_M, chain_encoding_all, letter_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef_all, pssm_bias_all, pssm_log_odds_all, bias_by_res_all, tied_beta
def loss_nll(S, log_probs, mask):
""" Negative log probabilities """
criterion = torch.nn.NLLLoss(reduction='none')
loss = criterion(
log_probs.contiguous().view(-1, log_probs.size(-1)), S.contiguous().view(-1)
).view(S.size())
loss_av = torch.sum(loss * mask) / torch.sum(mask)
return loss, loss_av
def loss_smoothed(S, log_probs, mask, weight=0.1):
""" Negative log probabilities """
S_onehot = torch.nn.functional.one_hot(S, 21).float()
# Label smoothing
S_onehot = S_onehot + weight / float(S_onehot.size(-1))
S_onehot = S_onehot / S_onehot.sum(-1, keepdim=True)
loss = -(S_onehot * log_probs).sum(-1)
loss_av = torch.sum(loss * mask) / torch.sum(mask)
return loss, loss_av
class StructureDataset():
def __init__(self, jsonl_file, verbose=True, truncate=None, max_length=100,
alphabet='ACDEFGHIKLMNPQRSTVWYX-'):
alphabet_set = set([a for a in alphabet])
discard_count = {
'bad_chars': 0,
'too_long': 0,
'bad_seq_length': 0
}
with open(jsonl_file) as f:
self.data = []
lines = f.readlines()
start = time.time()
for i, line in enumerate(lines):
entry = json.loads(line)
seq = entry['seq']
name = entry['name']
# Convert raw coords to np arrays
#for key, val in entry['coords'].items():
# entry['coords'][key] = np.asarray(val)
# Check if in alphabet
bad_chars = set([s for s in seq]).difference(alphabet_set)
if len(bad_chars) == 0:
if len(entry['seq']) <= max_length:
if True:
self.data.append(entry)
else:
discard_count['bad_seq_length'] += 1
else:
discard_count['too_long'] += 1
else:
if verbose:
print(name, bad_chars, entry['seq'])
discard_count['bad_chars'] += 1
# Truncate early
if truncate is not None and len(self.data) == truncate:
return
if verbose and (i + 1) % 1000 == 0:
elapsed = time.time() - start
print('{} entries ({} loaded) in {:.1f} s'.format(len(self.data), i+1, elapsed))
if verbose:
print('discarded', discard_count)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class StructureDatasetPDB():
def __init__(self, pdb_dict_list, verbose=True, truncate=None, max_length=100,
alphabet='ACDEFGHIKLMNPQRSTVWYX-'):
alphabet_set = set([a for a in alphabet])
discard_count = {
'bad_chars': 0,
'too_long': 0,
'bad_seq_length': 0
}
self.data = []
start = time.time()
for i, entry in enumerate(pdb_dict_list):
seq = entry['seq']
name = entry['name']
bad_chars = set([s for s in seq]).difference(alphabet_set)
if len(bad_chars) == 0:
if len(entry['seq']) <= max_length:
self.data.append(entry)
else:
discard_count['too_long'] += 1
else:
discard_count['bad_chars'] += 1
# Truncate early
if truncate is not None and len(self.data) == truncate:
return
if verbose and (i + 1) % 1000 == 0:
elapsed = time.time() - start
#print('Discarded', discard_count)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class StructureLoader():
def __init__(self, dataset, batch_size=100, shuffle=True,
collate_fn=lambda x:x, drop_last=False):
self.dataset = dataset
self.size = len(dataset)
self.lengths = [len(dataset[i]['seq']) for i in range(self.size)]
self.batch_size = batch_size
sorted_ix = np.argsort(self.lengths)
# Cluster into batches of similar sizes
clusters, batch = [], []
batch_max = 0
for ix in sorted_ix:
size = self.lengths[ix]
if size * (len(batch) + 1) <= self.batch_size:
batch.append(ix)
batch_max = size
else:
clusters.append(batch)
batch, batch_max = [], 0
if len(batch) > 0:
clusters.append(batch)
self.clusters = clusters
def __len__(self):
return len(self.clusters)
def __iter__(self):
np.random.shuffle(self.clusters)
for b_idx in self.clusters:
batch = [self.dataset[i] for i in b_idx]
yield batch
# The following gather functions
def gather_edges(edges, neighbor_idx):
# Features [B,N,N,C] at Neighbor indices [B,N,K] => Neighbor features [B,N,K,C]
neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
edge_features = torch.gather(edges, 2, neighbors)
return edge_features
def gather_nodes(nodes, neighbor_idx):
# Features [B,N,C] at Neighbor indices [B,N,K] => [B,N,K,C]
# Flatten and expand indices per batch [B,N,K] => [B,NK] => [B,NK,C]
neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1))
neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2))
# Gather and re-pack
neighbor_features = torch.gather(nodes, 1, neighbors_flat)
neighbor_features = neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1])
return neighbor_features
def gather_nodes_t(nodes, neighbor_idx):
# Features [B,N,C] at Neighbor index [B,K] => Neighbor features[B,K,C]
idx_flat = neighbor_idx.unsqueeze(-1).expand(-1, -1, nodes.size(2))
neighbor_features = torch.gather(nodes, 1, idx_flat)
return neighbor_features
def cat_neighbors_nodes(h_nodes, h_neighbors, E_idx):
h_nodes = gather_nodes(h_nodes, E_idx)
h_nn = torch.cat([h_neighbors, h_nodes], -1)
return h_nn
class EncLayer(nn.Module):
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
super(EncLayer, self).__init__()
self.num_hidden = num_hidden
self.num_in = num_in
self.scale = scale
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(num_hidden)
self.norm2 = nn.LayerNorm(num_hidden)
self.norm3 = nn.LayerNorm(num_hidden)
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W11 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W12 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W13 = nn.Linear(num_hidden, num_hidden, bias=True)
self.act = torch.nn.GELU()
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
def forward(self, h_V, h_E, E_idx, mask_V=None, mask_attend=None):
""" Parallel computation of full transformer layer """
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_EV], -1)
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
if mask_attend is not None:
h_message = mask_attend.unsqueeze(-1) * h_message
dh = torch.sum(h_message, -2) / self.scale
h_V = self.norm1(h_V + self.dropout1(dh))
dh = self.dense(h_V)
h_V = self.norm2(h_V + self.dropout2(dh))
if mask_V is not None:
mask_V = mask_V.unsqueeze(-1)
h_V = mask_V * h_V
h_EV = cat_neighbors_nodes(h_V, h_E, E_idx)
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_EV.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_EV], -1)
h_message = self.W13(self.act(self.W12(self.act(self.W11(h_EV)))))
h_E = self.norm3(h_E + self.dropout3(h_message))
return h_V, h_E
class DecLayer(nn.Module):
def __init__(self, num_hidden, num_in, dropout=0.1, num_heads=None, scale=30):
super(DecLayer, self).__init__()
self.num_hidden = num_hidden
self.num_in = num_in
self.scale = scale
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(num_hidden)
self.norm2 = nn.LayerNorm(num_hidden)
self.W1 = nn.Linear(num_hidden + num_in, num_hidden, bias=True)
self.W2 = nn.Linear(num_hidden, num_hidden, bias=True)
self.W3 = nn.Linear(num_hidden, num_hidden, bias=True)
self.act = torch.nn.GELU()
self.dense = PositionWiseFeedForward(num_hidden, num_hidden * 4)
def forward(self, h_V, h_E, mask_V=None, mask_attend=None):
""" Parallel computation of full transformer layer """
# Concatenate h_V_i to h_E_ij
h_V_expand = h_V.unsqueeze(-2).expand(-1,-1,h_E.size(-2),-1)
h_EV = torch.cat([h_V_expand, h_E], -1)
h_message = self.W3(self.act(self.W2(self.act(self.W1(h_EV)))))
if mask_attend is not None:
h_message = mask_attend.unsqueeze(-1) * h_message
dh = torch.sum(h_message, -2) / self.scale
h_V = self.norm1(h_V + self.dropout1(dh))
# Position-wise feedforward
dh = self.dense(h_V)
h_V = self.norm2(h_V + self.dropout2(dh))
if mask_V is not None:
mask_V = mask_V.unsqueeze(-1)
h_V = mask_V * h_V
return h_V
class PositionWiseFeedForward(nn.Module):
def __init__(self, num_hidden, num_ff):
super(PositionWiseFeedForward, self).__init__()
self.W_in = nn.Linear(num_hidden, num_ff, bias=True)
self.W_out = nn.Linear(num_ff, num_hidden, bias=True)
self.act = torch.nn.GELU()
def forward(self, h_V):
h = self.act(self.W_in(h_V))
h = self.W_out(h)
return h
class PositionalEncodings(nn.Module):
def __init__(self, num_embeddings, max_relative_feature=32):
super(PositionalEncodings, self).__init__()
self.num_embeddings = num_embeddings
self.max_relative_feature = max_relative_feature
self.linear = nn.Linear(2*max_relative_feature+1+1, num_embeddings)
def forward(self, offset, mask):
d = torch.clip(offset + self.max_relative_feature, 0, 2*self.max_relative_feature)*mask + (1-mask)*(2*self.max_relative_feature+1)
d_onehot = torch.nn.functional.one_hot(d, 2*self.max_relative_feature+1+1)
E = self.linear(d_onehot.float())
return E
class CA_ProteinFeatures(nn.Module):
def __init__(self, edge_features, node_features, num_positional_embeddings=16,
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
""" Extract protein features """
super(CA_ProteinFeatures, self).__init__()
self.edge_features = edge_features
self.node_features = node_features
self.top_k = top_k
self.augment_eps = augment_eps
self.num_rbf = num_rbf
self.num_positional_embeddings = num_positional_embeddings
# Positional encoding
self.embeddings = PositionalEncodings(num_positional_embeddings)
# Normalization and embedding
node_in, edge_in = 3, num_positional_embeddings + num_rbf*9 + 7
self.node_embedding = nn.Linear(node_in, node_features, bias=False) #NOT USED
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
self.norm_nodes = nn.LayerNorm(node_features)
self.norm_edges = nn.LayerNorm(edge_features)
def _quaternions(self, R):
""" Convert a batch of 3D rotations [R] to quaternions [Q]
R [...,3,3]
Q [...,4]
"""
# Simple Wikipedia version
# en.wikipedia.org/wiki/Rotation_matrix#Quaternion
# For other options see math.stackexchange.com/questions/2074316/calculating-rotation-axis-from-rotation-matrix
diag = torch.diagonal(R, dim1=-2, dim2=-1)
Rxx, Ryy, Rzz = diag.unbind(-1)
magnitudes = 0.5 * torch.sqrt(torch.abs(1 + torch.stack([
Rxx - Ryy - Rzz,
- Rxx + Ryy - Rzz,
- Rxx - Ryy + Rzz
], -1)))
_R = lambda i,j: R[:,:,:,i,j]
signs = torch.sign(torch.stack([
_R(2,1) - _R(1,2),
_R(0,2) - _R(2,0),
_R(1,0) - _R(0,1)
], -1))
xyz = signs * magnitudes
# The relu enforces a non-negative trace
w = torch.sqrt(F.relu(1 + diag.sum(-1, keepdim=True))) / 2.
Q = torch.cat((xyz, w), -1)
Q = F.normalize(Q, dim=-1)
return Q
def _orientations_coarse(self, X, E_idx, eps=1e-6):
dX = X[:,1:,:] - X[:,:-1,:]
dX_norm = torch.norm(dX,dim=-1)
dX_mask = (3.6<dX_norm) & (dX_norm<4.0) #exclude CA-CA jumps
dX = dX*dX_mask[:,:,None]
U = F.normalize(dX, dim=-1)
u_2 = U[:,:-2,:]
u_1 = U[:,1:-1,:]
u_0 = U[:,2:,:]
# Backbone normals
n_2 = F.normalize(torch.cross(u_2, u_1), dim=-1)
n_1 = F.normalize(torch.cross(u_1, u_0), dim=-1)
# Bond angle calculation
cosA = -(u_1 * u_0).sum(-1)
cosA = torch.clamp(cosA, -1+eps, 1-eps)
A = torch.acos(cosA)
# Angle between normals
cosD = (n_2 * n_1).sum(-1)
cosD = torch.clamp(cosD, -1+eps, 1-eps)
D = torch.sign((u_2 * n_1).sum(-1)) * torch.acos(cosD)
# Backbone features
AD_features = torch.stack((torch.cos(A), torch.sin(A) * torch.cos(D), torch.sin(A) * torch.sin(D)), 2)
AD_features = F.pad(AD_features, (0,0,1,2), 'constant', 0)
# Build relative orientations
o_1 = F.normalize(u_2 - u_1, dim=-1)
O = torch.stack((o_1, n_2, torch.cross(o_1, n_2)), 2)
O = O.view(list(O.shape[:2]) + [9])
O = F.pad(O, (0,0,1,2), 'constant', 0)
O_neighbors = gather_nodes(O, E_idx)
X_neighbors = gather_nodes(X, E_idx)
# Re-view as rotation matrices
O = O.view(list(O.shape[:2]) + [3,3])
O_neighbors = O_neighbors.view(list(O_neighbors.shape[:3]) + [3,3])
# Rotate into local reference frames
dX = X_neighbors - X.unsqueeze(-2)
dU = torch.matmul(O.unsqueeze(2), dX.unsqueeze(-1)).squeeze(-1)
dU = F.normalize(dU, dim=-1)
R = torch.matmul(O.unsqueeze(2).transpose(-1,-2), O_neighbors)
Q = self._quaternions(R)
# Orientation features
O_features = torch.cat((dU,Q), dim=-1)
return AD_features, O_features
def _dist(self, X, mask, eps=1E-6):
""" Pairwise euclidean distances """
# Convolutional network on NCHW
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
# Identify k nearest neighbors (including self)
D_max, _ = torch.max(D, -1, keepdim=True)
D_adjust = D + (1. - mask_2D) * D_max
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
mask_neighbors = gather_edges(mask_2D.unsqueeze(-1), E_idx)
return D_neighbors, E_idx, mask_neighbors
def _rbf(self, D):
# Distance radial basis function
device = D.device
D_min, D_max, D_count = 2., 22., self.num_rbf
D_mu = torch.linspace(D_min, D_max, D_count).to(device)
D_mu = D_mu.view([1,1,1,-1])
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def _get_rbf(self, A, B, E_idx):
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
RBF_A_B = self._rbf(D_A_B_neighbors)
return RBF_A_B
def forward(self, Ca, mask, residue_idx, chain_labels):
""" Featurize coordinates as an attributed graph """
if self.augment_eps > 0:
Ca = Ca + self.augment_eps * torch.randn_like(Ca)
D_neighbors, E_idx, mask_neighbors = self._dist(Ca, mask)
Ca_0 = torch.zeros(Ca.shape, device=Ca.device)
Ca_2 = torch.zeros(Ca.shape, device=Ca.device)
Ca_0[:,1:,:] = Ca[:,:-1,:]
Ca_1 = Ca
Ca_2[:,:-1,:] = Ca[:,1:,:]
V, O_features = self._orientations_coarse(Ca, E_idx)
RBF_all = []
RBF_all.append(self._rbf(D_neighbors)) #Ca_1-Ca_1
RBF_all.append(self._get_rbf(Ca_0, Ca_0, E_idx))
RBF_all.append(self._get_rbf(Ca_2, Ca_2, E_idx))
RBF_all.append(self._get_rbf(Ca_0, Ca_1, E_idx))
RBF_all.append(self._get_rbf(Ca_0, Ca_2, E_idx))
RBF_all.append(self._get_rbf(Ca_1, Ca_0, E_idx))
RBF_all.append(self._get_rbf(Ca_1, Ca_2, E_idx))
RBF_all.append(self._get_rbf(Ca_2, Ca_0, E_idx))
RBF_all.append(self._get_rbf(Ca_2, Ca_1, E_idx))
RBF_all = torch.cat(tuple(RBF_all), dim=-1)
offset = residue_idx[:,:,None]-residue_idx[:,None,:]
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long()
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
E_positional = self.embeddings(offset.long(), E_chains)
E = torch.cat((E_positional, RBF_all, O_features), -1)
E = self.edge_embedding(E)
E = self.norm_edges(E)
return E, E_idx
class ProteinFeatures(nn.Module):
def __init__(self, edge_features, node_features, num_positional_embeddings=16,
num_rbf=16, top_k=30, augment_eps=0., num_chain_embeddings=16):
""" Extract protein features """
super(ProteinFeatures, self).__init__()
self.edge_features = edge_features
self.node_features = node_features
self.top_k = top_k
self.augment_eps = augment_eps
self.num_rbf = num_rbf
self.num_positional_embeddings = num_positional_embeddings
self.embeddings = PositionalEncodings(num_positional_embeddings)
node_in, edge_in = 6, num_positional_embeddings + num_rbf*25
self.edge_embedding = nn.Linear(edge_in, edge_features, bias=False)
self.norm_edges = nn.LayerNorm(edge_features)
def _dist(self, X, mask, eps=1E-6):
mask_2D = torch.unsqueeze(mask,1) * torch.unsqueeze(mask,2)
dX = torch.unsqueeze(X,1) - torch.unsqueeze(X,2)
D = mask_2D * torch.sqrt(torch.sum(dX**2, 3) + eps)
D_max, _ = torch.max(D, -1, keepdim=True)
D_adjust = D + (1. - mask_2D) * D_max
sampled_top_k = self.top_k
D_neighbors, E_idx = torch.topk(D_adjust, np.minimum(self.top_k, X.shape[1]), dim=-1, largest=False)
return D_neighbors, E_idx
def _rbf(self, D):
device = D.device
D_min, D_max, D_count = 2., 22., self.num_rbf
D_mu = torch.linspace(D_min, D_max, D_count, device=device)
D_mu = D_mu.view([1,1,1,-1])
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def _get_rbf(self, A, B, E_idx):
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
RBF_A_B = self._rbf(D_A_B_neighbors)
return RBF_A_B
def forward(self, X, mask, residue_idx, chain_labels):
if self.augment_eps > 0:
X = X + self.augment_eps * torch.randn_like(X)
b = X[:,:,1,:] - X[:,:,0,:]
c = X[:,:,2,:] - X[:,:,1,:]
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + X[:,:,1,:]
Ca = X[:,:,1,:]
N = X[:,:,0,:]
C = X[:,:,2,:]
O = X[:,:,3,:]
D_neighbors, E_idx = self._dist(Ca, mask)
RBF_all = []
RBF_all.append(self._rbf(D_neighbors)) #Ca-Ca
RBF_all.append(self._get_rbf(N, N, E_idx)) #N-N
RBF_all.append(self._get_rbf(C, C, E_idx)) #C-C
RBF_all.append(self._get_rbf(O, O, E_idx)) #O-O
RBF_all.append(self._get_rbf(Cb, Cb, E_idx)) #Cb-Cb
RBF_all.append(self._get_rbf(Ca, N, E_idx)) #Ca-N
RBF_all.append(self._get_rbf(Ca, C, E_idx)) #Ca-C
RBF_all.append(self._get_rbf(Ca, O, E_idx)) #Ca-O
RBF_all.append(self._get_rbf(Ca, Cb, E_idx)) #Ca-Cb
RBF_all.append(self._get_rbf(N, C, E_idx)) #N-C
RBF_all.append(self._get_rbf(N, O, E_idx)) #N-O
RBF_all.append(self._get_rbf(N, Cb, E_idx)) #N-Cb
RBF_all.append(self._get_rbf(Cb, C, E_idx)) #Cb-C
RBF_all.append(self._get_rbf(Cb, O, E_idx)) #Cb-O
RBF_all.append(self._get_rbf(O, C, E_idx)) #O-C
RBF_all.append(self._get_rbf(N, Ca, E_idx)) #N-Ca
RBF_all.append(self._get_rbf(C, Ca, E_idx)) #C-Ca
RBF_all.append(self._get_rbf(O, Ca, E_idx)) #O-Ca
RBF_all.append(self._get_rbf(Cb, Ca, E_idx)) #Cb-Ca
RBF_all.append(self._get_rbf(C, N, E_idx)) #C-N
RBF_all.append(self._get_rbf(O, N, E_idx)) #O-N
RBF_all.append(self._get_rbf(Cb, N, E_idx)) #Cb-N
RBF_all.append(self._get_rbf(C, Cb, E_idx)) #C-Cb
RBF_all.append(self._get_rbf(O, Cb, E_idx)) #O-Cb
RBF_all.append(self._get_rbf(C, O, E_idx)) #C-O
RBF_all = torch.cat(tuple(RBF_all), dim=-1)
offset = residue_idx[:,:,None]-residue_idx[:,None,:]
offset = gather_edges(offset[:,:,:,None], E_idx)[:,:,:,0] #[B, L, K]
d_chains = ((chain_labels[:, :, None] - chain_labels[:,None,:])==0).long() #find self vs non-self interaction
E_chains = gather_edges(d_chains[:,:,:,None], E_idx)[:,:,:,0]
E_positional = self.embeddings(offset.long(), E_chains)
E = torch.cat((E_positional, RBF_all), -1)
E = self.edge_embedding(E)
E = self.norm_edges(E)
return E, E_idx
class ProteinMPNN(nn.Module):
def __init__(self, num_letters, node_features, edge_features,
hidden_dim, num_encoder_layers=3, num_decoder_layers=3,
vocab=21, k_neighbors=64, augment_eps=0.05, dropout=0.1, ca_only=False):
super(ProteinMPNN, self).__init__()
# Hyperparameters
self.node_features = node_features
self.edge_features = edge_features
self.hidden_dim = hidden_dim
# Featurization layers
if ca_only:
self.features = CA_ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
self.W_v = nn.Linear(node_features, hidden_dim, bias=True)
else:
self.features = ProteinFeatures(node_features, edge_features, top_k=k_neighbors, augment_eps=augment_eps)
self.W_e = nn.Linear(edge_features, hidden_dim, bias=True)
self.W_s = nn.Embedding(vocab, hidden_dim)
# Encoder layers
self.encoder_layers = nn.ModuleList([
EncLayer(hidden_dim, hidden_dim*2, dropout=dropout)
for _ in range(num_encoder_layers)
])
# Decoder layers
self.decoder_layers = nn.ModuleList([
DecLayer(hidden_dim, hidden_dim*3, dropout=dropout)
for _ in range(num_decoder_layers)
])
self.W_out = nn.Linear(hidden_dim, num_letters, bias=True)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, X, S, mask, chain_M, residue_idx, chain_encoding_all, randn, use_input_decoding_order=False, decoding_order=None):
""" Graph-conditioned sequence model """
device=X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
# Concatenate sequence embeddings for autoregressive decoder
h_S = self.W_s(S)
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)
# Build encoder embeddings
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
chain_M = chain_M*mask #update chain_M to include missing regions
if not use_input_decoding_order:
decoding_order = torch.argsort((chain_M+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
mask_size = E_idx.shape[1]
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for layer in self.decoder_layers:
# Masked positions attend to encoder information, unmasked see.
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
h_V = layer(h_V, h_ESV, mask)
logits = self.W_out(h_V)
log_probs = F.log_softmax(logits, dim=-1)
return log_probs
def sample(self, X, randn, S_true, chain_mask, chain_encoding_all, residue_idx, mask=None, temperature=1.0, omit_AAs_np=None, bias_AAs_np=None, chain_M_pos=None, omit_AA_mask=None, pssm_coef=None, pssm_bias=None, pssm_multi=None, pssm_log_odds_flag=None, pssm_log_odds_mask=None, pssm_bias_flag=None, bias_by_res=None):
device = X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
# Decoder uses masked self-attention
chain_mask = chain_mask*chain_M_pos*mask #update chain_M to include missing regions
decoding_order = torch.argsort((chain_mask+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
mask_size = E_idx.shape[1]
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
N_batch, N_nodes = X.size(0), X.size(1)
log_probs = torch.zeros((N_batch, N_nodes, 21), device=device)
all_probs = torch.zeros((N_batch, N_nodes, 21), device=device, dtype=torch.float32)
h_S = torch.zeros_like(h_V, device=device)
S = torch.zeros((N_batch, N_nodes), dtype=torch.int64, device=device)
h_V_stack = [h_V] + [torch.zeros_like(h_V, device=device) for _ in range(len(self.decoder_layers))]
constant = torch.tensor(omit_AAs_np, device=device)
constant_bias = torch.tensor(bias_AAs_np, device=device)
#chain_mask_combined = chain_mask*chain_M_pos
omit_AA_mask_flag = omit_AA_mask != None
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for t_ in range(N_nodes):
t = decoding_order[:,t_] #[B]
chain_mask_gathered = torch.gather(chain_mask, 1, t[:,None]) #[B]
mask_gathered = torch.gather(mask, 1, t[:,None]) #[B]
bias_by_res_gathered = torch.gather(bias_by_res, 1, t[:,None,None].repeat(1,1,21))[:,0,:] #[B, 21]
if (mask_gathered==0).all(): #for padded or missing regions only
S_t = torch.gather(S_true, 1, t[:,None])
else:
# Hidden layers
E_idx_t = torch.gather(E_idx, 1, t[:,None,None].repeat(1,1,E_idx.shape[-1]))
h_E_t = torch.gather(h_E, 1, t[:,None,None,None].repeat(1,1,h_E.shape[-2], h_E.shape[-1]))
h_ES_t = cat_neighbors_nodes(h_S, h_E_t, E_idx_t)
h_EXV_encoder_t = torch.gather(h_EXV_encoder_fw, 1, t[:,None,None,None].repeat(1,1,h_EXV_encoder_fw.shape[-2], h_EXV_encoder_fw.shape[-1]))
mask_t = torch.gather(mask, 1, t[:,None])
for l, layer in enumerate(self.decoder_layers):
# Updated relational features for future states
h_ESV_decoder_t = cat_neighbors_nodes(h_V_stack[l], h_ES_t, E_idx_t)
h_V_t = torch.gather(h_V_stack[l], 1, t[:,None,None].repeat(1,1,h_V_stack[l].shape[-1]))
h_ESV_t = torch.gather(mask_bw, 1, t[:,None,None,None].repeat(1,1,mask_bw.shape[-2], mask_bw.shape[-1])) * h_ESV_decoder_t + h_EXV_encoder_t
h_V_stack[l+1].scatter_(1, t[:,None,None].repeat(1,1,h_V.shape[-1]), layer(h_V_t, h_ESV_t, mask_V=mask_t))
# Sampling step
h_V_t = torch.gather(h_V_stack[-1], 1, t[:,None,None].repeat(1,1,h_V_stack[-1].shape[-1]))[:,0]
logits = self.W_out(h_V_t) / temperature
probs = F.softmax(logits-constant[None,:]*1e8+constant_bias[None,:]/temperature+bias_by_res_gathered/temperature, dim=-1)
if pssm_bias_flag:
pssm_coef_gathered = torch.gather(pssm_coef, 1, t[:,None])[:,0]
pssm_bias_gathered = torch.gather(pssm_bias, 1, t[:,None,None].repeat(1,1,pssm_bias.shape[-1]))[:,0]
probs = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered
if pssm_log_odds_flag:
pssm_log_odds_mask_gathered = torch.gather(pssm_log_odds_mask, 1, t[:,None, None].repeat(1,1,pssm_log_odds_mask.shape[-1]))[:,0] #[B, 21]
probs_masked = probs*pssm_log_odds_mask_gathered
probs_masked += probs * 0.001
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
if omit_AA_mask_flag:
omit_AA_mask_gathered = torch.gather(omit_AA_mask, 1, t[:,None, None].repeat(1,1,omit_AA_mask.shape[-1]))[:,0] #[B, 21]
probs_masked = probs*(1.0-omit_AA_mask_gathered)
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
S_t = torch.multinomial(probs, 1)
all_probs.scatter_(1, t[:,None,None].repeat(1,1,21), (chain_mask_gathered[:,:,None,]*probs[:,None,:]).float())
S_true_gathered = torch.gather(S_true, 1, t[:,None])
S_t = (S_t*chain_mask_gathered+S_true_gathered*(1.0-chain_mask_gathered)).long()
temp1 = self.W_s(S_t)
h_S.scatter_(1, t[:,None,None].repeat(1,1,temp1.shape[-1]), temp1)
S.scatter_(1, t[:,None], S_t)
output_dict = {"S": S, "probs": all_probs, "decoding_order": decoding_order}
return output_dict
def tied_sample(self, X, randn, S_true, chain_mask, chain_encoding_all, residue_idx, mask=None, temperature=1.0, omit_AAs_np=None, bias_AAs_np=None, chain_M_pos=None, omit_AA_mask=None, pssm_coef=None, pssm_bias=None, pssm_multi=None, pssm_log_odds_flag=None, pssm_log_odds_mask=None, pssm_bias_flag=None, tied_pos=None, tied_beta=None, bias_by_res=None):
device = X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
# Decoder uses masked self-attention
chain_mask = chain_mask*chain_M_pos*mask #update chain_M to include missing regions
decoding_order = torch.argsort((chain_mask+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
new_decoding_order = []
for t_dec in list(decoding_order[0,].cpu().data.numpy()):
if t_dec not in list(itertools.chain(*new_decoding_order)):
list_a = [item for item in tied_pos if t_dec in item]
if list_a:
new_decoding_order.append(list_a[0])
else:
new_decoding_order.append([t_dec])
decoding_order = torch.tensor(list(itertools.chain(*new_decoding_order)), device=device)[None,].repeat(X.shape[0],1)
mask_size = E_idx.shape[1]
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
N_batch, N_nodes = X.size(0), X.size(1)
log_probs = torch.zeros((N_batch, N_nodes, 21), device=device)
all_probs = torch.zeros((N_batch, N_nodes, 21), device=device, dtype=torch.float32)
h_S = torch.zeros_like(h_V, device=device)
S = torch.zeros((N_batch, N_nodes), dtype=torch.int64, device=device)
h_V_stack = [h_V] + [torch.zeros_like(h_V, device=device) for _ in range(len(self.decoder_layers))]
constant = torch.tensor(omit_AAs_np, device=device)
constant_bias = torch.tensor(bias_AAs_np, device=device)
omit_AA_mask_flag = omit_AA_mask != None
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for t_list in new_decoding_order:
logits = 0.0
logit_list = []
done_flag = False
for t in t_list:
if (mask[:,t]==0).all():
S_t = S_true[:,t]
for t in t_list:
h_S[:,t,:] = self.W_s(S_t)
S[:,t] = S_t
done_flag = True
break
else:
E_idx_t = E_idx[:,t:t+1,:]
h_E_t = h_E[:,t:t+1,:,:]
h_ES_t = cat_neighbors_nodes(h_S, h_E_t, E_idx_t)
h_EXV_encoder_t = h_EXV_encoder_fw[:,t:t+1,:,:]
mask_t = mask[:,t:t+1]
for l, layer in enumerate(self.decoder_layers):
h_ESV_decoder_t = cat_neighbors_nodes(h_V_stack[l], h_ES_t, E_idx_t)
h_V_t = h_V_stack[l][:,t:t+1,:]
h_ESV_t = mask_bw[:,t:t+1,:,:] * h_ESV_decoder_t + h_EXV_encoder_t
h_V_stack[l+1][:,t,:] = layer(h_V_t, h_ESV_t, mask_V=mask_t).squeeze(1)
h_V_t = h_V_stack[-1][:,t,:]
logit_list.append((self.W_out(h_V_t) / temperature)/len(t_list))
logits += tied_beta[t]*(self.W_out(h_V_t) / temperature)/len(t_list)
if done_flag:
pass
else:
bias_by_res_gathered = bias_by_res[:,t,:] #[B, 21]
probs = F.softmax(logits-constant[None,:]*1e8+constant_bias[None,:]/temperature+bias_by_res_gathered/temperature, dim=-1)
if pssm_bias_flag:
pssm_coef_gathered = pssm_coef[:,t]
pssm_bias_gathered = pssm_bias[:,t]
probs = (1-pssm_multi*pssm_coef_gathered[:,None])*probs + pssm_multi*pssm_coef_gathered[:,None]*pssm_bias_gathered
if pssm_log_odds_flag:
pssm_log_odds_mask_gathered = pssm_log_odds_mask[:,t]
probs_masked = probs*pssm_log_odds_mask_gathered
probs_masked += probs * 0.001
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
if omit_AA_mask_flag:
omit_AA_mask_gathered = omit_AA_mask[:,t]
probs_masked = probs*(1.0-omit_AA_mask_gathered)
probs = probs_masked/torch.sum(probs_masked, dim=-1, keepdim=True) #[B, 21]
S_t_repeat = torch.multinomial(probs, 1).squeeze(-1)
S_t_repeat = (chain_mask[:,t]*S_t_repeat + (1-chain_mask[:,t])*S_true[:,t]).long() #hard pick fixed positions
for t in t_list:
h_S[:,t,:] = self.W_s(S_t_repeat)
S[:,t] = S_t_repeat
all_probs[:,t,:] = probs.float()
output_dict = {"S": S, "probs": all_probs, "decoding_order": decoding_order}
return output_dict
def conditional_probs(self, X, S, mask, chain_M, residue_idx, chain_encoding_all, randn, backbone_only=False):
""" Graph-conditioned sequence model """
device=X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V_enc = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V_enc, h_E = layer(h_V_enc, h_E, E_idx, mask, mask_attend)
# Concatenate sequence embeddings for autoregressive decoder
h_S = self.W_s(S)
h_ES = cat_neighbors_nodes(h_S, h_E, E_idx)
# Build encoder embeddings
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_S), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V_enc, h_EX_encoder, E_idx)
chain_M = chain_M*mask #update chain_M to include missing regions
chain_M_np = chain_M.cpu().numpy()
idx_to_loop = np.argwhere(chain_M_np[0,:]==1)[:,0]
log_conditional_probs = torch.zeros([X.shape[0], chain_M.shape[1], 21], device=device).float()
for idx in idx_to_loop:
h_V = torch.clone(h_V_enc)
order_mask = torch.zeros(chain_M.shape[1], device=device).float()
if backbone_only:
order_mask = torch.ones(chain_M.shape[1], device=device).float()
order_mask[idx] = 0.
else:
order_mask = torch.zeros(chain_M.shape[1], device=device).float()
order_mask[idx] = 1.
decoding_order = torch.argsort((order_mask[None,]+0.0001)*(torch.abs(randn))) #[numbers will be smaller for places where chain_M = 0.0 and higher for places where chain_M = 1.0]
mask_size = E_idx.shape[1]
permutation_matrix_reverse = torch.nn.functional.one_hot(decoding_order, num_classes=mask_size).float()
order_mask_backward = torch.einsum('ij, biq, bjp->bqp',(1-torch.triu(torch.ones(mask_size,mask_size, device=device))), permutation_matrix_reverse, permutation_matrix_reverse)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for layer in self.decoder_layers:
# Masked positions attend to encoder information, unmasked see.
h_ESV = cat_neighbors_nodes(h_V, h_ES, E_idx)
h_ESV = mask_bw * h_ESV + h_EXV_encoder_fw
h_V = layer(h_V, h_ESV, mask)
logits = self.W_out(h_V)
log_probs = F.log_softmax(logits, dim=-1)
log_conditional_probs[:,idx,:] = log_probs[:,idx,:]
return log_conditional_probs
def unconditional_probs(self, X, mask, residue_idx, chain_encoding_all):
""" Graph-conditioned sequence model """
device=X.device
# Prepare node and edge embeddings
E, E_idx = self.features(X, mask, residue_idx, chain_encoding_all)
h_V = torch.zeros((E.shape[0], E.shape[1], E.shape[-1]), device=E.device)
h_E = self.W_e(E)
# Encoder is unmasked self-attention
mask_attend = gather_nodes(mask.unsqueeze(-1), E_idx).squeeze(-1)
mask_attend = mask.unsqueeze(-1) * mask_attend
for layer in self.encoder_layers:
h_V, h_E = layer(h_V, h_E, E_idx, mask, mask_attend)
# Build encoder embeddings
h_EX_encoder = cat_neighbors_nodes(torch.zeros_like(h_V), h_E, E_idx)
h_EXV_encoder = cat_neighbors_nodes(h_V, h_EX_encoder, E_idx)
order_mask_backward = torch.zeros([X.shape[0], X.shape[1], X.shape[1]], device=device)
mask_attend = torch.gather(order_mask_backward, 2, E_idx).unsqueeze(-1)
mask_1D = mask.view([mask.size(0), mask.size(1), 1, 1])
mask_bw = mask_1D * mask_attend
mask_fw = mask_1D * (1. - mask_attend)
h_EXV_encoder_fw = mask_fw * h_EXV_encoder
for layer in self.decoder_layers:
h_V = layer(h_V, h_EXV_encoder_fw, mask)
logits = self.W_out(h_V)
log_probs = F.log_softmax(logits, dim=-1)
return log_probs
|