File size: 44,055 Bytes
33523ce
b1935a9
 
 
 
 
e68ca61
 
 
20172b4
 
 
33523ce
e68ca61
 
 
 
 
8a0361c
20172b4
e68ca61
33523ce
20172b4
 
 
 
e68ca61
 
20172b4
e68ca61
 
 
 
 
 
 
 
 
 
 
 
 
20172b4
e68ca61
 
20172b4
e68ca61
 
 
 
 
 
20172b4
e68ca61
 
 
 
 
 
 
20172b4
 
 
 
 
 
 
 
 
 
 
 
8a0361c
 
 
 
 
 
 
e68ca61
 
 
 
 
 
 
b1935a9
20172b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a0361c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1935a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68ca61
 
 
 
b1935a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68ca61
b1935a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68ca61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1935a9
2d0be37
f953180
e68ca61
2d0be37
 
f953180
 
2d0be37
f953180
2d0be37
 
 
 
 
 
f953180
2d0be37
 
e68ca61
f953180
 
 
 
 
2d0be37
 
 
f953180
2d0be37
f953180
 
 
2d0be37
 
f953180
2d0be37
 
 
f953180
2d0be37
f953180
 
2d0be37
 
 
f953180
2d0be37
 
f953180
 
 
 
2d0be37
 
 
f953180
e68ca61
f953180
 
 
 
2d0be37
e68ca61
20172b4
 
e68ca61
20172b4
 
 
 
 
 
 
 
 
 
 
 
 
 
e68ca61
20172b4
e68ca61
20172b4
 
e68ca61
20172b4
 
 
e68ca61
20172b4
 
 
 
 
2d0be37
20172b4
 
 
 
 
 
 
 
2d0be37
20172b4
 
2d0be37
20172b4
 
 
 
 
 
 
 
 
e68ca61
20172b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68ca61
20172b4
 
 
 
 
 
 
 
 
e68ca61
20172b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68ca61
20172b4
 
 
 
 
 
 
 
 
 
e68ca61
20172b4
 
 
e68ca61
20172b4
 
b1935a9
20172b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1935a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20172b4
b1935a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20172b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1935a9
 
 
 
 
 
20172b4
 
 
 
 
 
 
 
6c9b3a8
20172b4
e68ca61
20172b4
 
 
 
 
 
 
 
 
 
 
2d0be37
e68ca61
 
 
b1935a9
 
 
 
 
 
 
20172b4
b1935a9
 
 
 
 
 
 
 
2d0be37
b1935a9
20172b4
 
 
 
 
 
b1935a9
 
 
20172b4
 
 
 
 
 
 
b1935a9
 
e68ca61
 
 
b1935a9
20172b4
 
e68ca61
 
 
b1935a9
 
 
 
2d0be37
 
 
 
b1935a9
2d0be37
b1935a9
 
e68ca61
 
 
b1935a9
 
20172b4
 
e68ca61
 
 
b1935a9
 
 
e68ca61
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
import gradio as gr
import numpy as np
import pandas as pd
import torch
import matplotlib.pyplot as plt
import json
import time
import os
from functools import partial
import datetime
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Global variables to store models
tokenizer = None
ner_pipeline = None
pos_pipeline = None
intent_classifier = None
semantic_model = None
stt_model = None  # Speech-to-text model
models_loaded = False

# Database to store keyword ranking history (in-memory database for this example)
# In a real app, you would use a proper database
ranking_history = {}

def load_models(progress=gr.Progress()):
    """Lazy-load models only when needed"""
    global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, semantic_model, stt_model, models_loaded
    
    if models_loaded:
        return True
    
    try:
        progress(0.1, desc="Loading models...")
        
        # Use smaller models and load them sequentially to reduce memory pressure
        from transformers import AutoTokenizer, pipeline
        
        progress(0.2, desc="Loading tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        
        progress(0.3, desc="Loading NER model...")
        ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
        
        progress(0.4, desc="Loading POS model...")
        # Use smaller POS model
        from transformers import AutoModelForTokenClassification, BertTokenizerFast
        pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
        pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
        pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)
        
        progress(0.6, desc="Loading intent classifier...")
        # Use a smaller model for zero-shot classification
        intent_classifier = pipeline(
            "zero-shot-classification", 
            model="typeform/distilbert-base-uncased-mnli",  # Smaller than BART
            device=0 if torch.cuda.is_available() else -1   # Use GPU if available
        )
        
        progress(0.7, desc="Loading speech-to-text model...")
        try:
            # Load automatic speech recognition model
            from transformers import WhisperProcessor, WhisperForConditionalGeneration
            processor = WhisperProcessor.from_pretrained("openai/whisper-small.en")
            stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en")
            stt_model = (processor, stt_model)
        except Exception as e:
            print(f"Warning: Could not load speech-to-text model: {str(e)}")
            stt_model = None  # Set to None so we can check if it's available
        
        progress(0.8, desc="Loading semantic model...")
        try:
            from sentence_transformers import SentenceTransformer
            semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
        except Exception as e:
            print(f"Warning: Could not load semantic model: {str(e)}")
            semantic_model = None  # Set to None so we can check if it's available
        
        progress(1.0, desc="Models loaded successfully!")
        models_loaded = True
        return True
    
    except Exception as e:
        print(f"Error loading models: {str(e)}")
        return f"Error: {str(e)}"

def speech_to_text(audio_path):
    """Convert speech to text using the loaded speech-to-text model"""
    if stt_model is None:
        return "Speech-to-text model not loaded. Please try text input instead."
    
    try:
        import librosa
        import numpy as np
        
        # Load audio file
        audio, sr = librosa.load(audio_path, sr=16000)
        
        # Process audio with Whisper
        processor, model = stt_model
        input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
        
        # Generate token ids
        predicted_ids = model.generate(input_features)
        
        # Decode token ids to text
        transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
        
        return transcription
    except Exception as e:
        print(f"Error in speech_to_text: {str(e)}")
        return f"Error processing speech: {str(e)}"

def handle_voice_input(audio):
    """Handle voice input and convert to text"""
    if audio is None:
        return "No audio detected. Please try again."
    
    try:
        # Convert speech to text
        text = speech_to_text(audio)
        return text
    except Exception as e:
        print(f"Error in handle_voice_input: {str(e)}")
        return f"Error: {str(e)}"

def simulate_google_serp(keyword, num_results=10):
    """Simulate Google SERP results for a keyword"""
    try:
        # In a real implementation, this would call the Google API
        # For now, we'll generate fake SERP data
        
        # Deterministic seed for consistent results by keyword
        np.random.seed(sum(ord(c) for c in keyword))
        
        serp_results = []
        domains = [
            "example.com", "wikipedia.org", "medium.com", "github.com", 
            "stackoverflow.com", "amazon.com", "youtube.com", "reddit.com",
            "linkedin.com", "twitter.com", "facebook.com", "instagram.com"
        ]
        
        for i in range(1, num_results + 1):
            domain = domains[i % len(domains)]
            title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}"
            snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic."
            url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}"
            
            position = i
            ctr = round(0.3 * (0.85 ** (i - 1)), 4)  # Simulate click-through rate decay
            
            serp_results.append({
                "position": position,
                "title": title,
                "url": url,
                "domain": domain,
                "snippet": snippet,
                "ctr_estimate": ctr,
                "impressions_estimate": np.random.randint(1000, 10000)
            })
        
        return serp_results
    except Exception as e:
        print(f"Error in simulate_google_serp: {str(e)}")
        return []

def update_ranking_history(keyword, serp_results):
    """Update the ranking history for a keyword"""
    try:
        # Get current timestamp
        timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        # Initialize if keyword not in history
        if keyword not in ranking_history:
            ranking_history[keyword] = []
        
        # Add new entry
        ranking_history[keyword].append({
            "timestamp": timestamp,
            "results": serp_results[:5]  # Store top 5 results for history
        })
        
        # Keep only last 10 entries for each keyword
        if len(ranking_history[keyword]) > 10:
            ranking_history[keyword] = ranking_history[keyword][-10:]
        
        return True
    except Exception as e:
        print(f"Error in update_ranking_history: {str(e)}")
        return False

def get_semantic_similarity(token, comparison_terms):
    """Calculate semantic similarity between a token and comparison terms"""
    try:
        from sklearn.metrics.pairwise import cosine_similarity
        
        token_embedding = semantic_model.encode([token])[0]
        comparison_embeddings = semantic_model.encode(comparison_terms)
        
        similarities = []
        for i, emb in enumerate(comparison_embeddings):
            similarity = cosine_similarity([token_embedding], [emb])[0][0]
            similarities.append((comparison_terms[i], float(similarity)))
        
        return sorted(similarities, key=lambda x: x[1], reverse=True)
    except Exception as e:
        print(f"Error in semantic similarity: {str(e)}")
        # Return dummy data on error
        return [(term, 0.5) for term in comparison_terms]

def get_token_colors(token_type):
    colors = {
        "prefix": "#D8BFD8",  # Light purple
        "suffix": "#AEDAA4",  # Light green
        "stem": "#A4C2F4",    # Light blue
        "compound_first": "#FFCC80",  # Light orange
        "compound_second": "#FFCC80", # Light orange
        "word": "#E5E5E5"     # Light gray
    }
    return colors.get(token_type, "#E5E5E5")

def simulate_historical_data(token):
    """Generate simulated historical usage data for a token"""
    eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"]
    
    # Different patterns based on token characteristics
    if len(token) > 8:
        # Possibly a technical term - recent growth
        values = [10, 20, 30, 60, 85, 95]
    elif token.startswith(("un", "re", "de", "pre")):
        # Prefix words tend to be older
        values = [45, 50, 60, 70, 75, 80]
    else:
        # Standard pattern for common words
        # Use token hash value modulo instead of hash() directly to avoid different results across runs
        base = 50 + (sum(ord(c) for c in token) % 30)
        # Use a fixed seed for reproducibility
        np.random.seed(sum(ord(c) for c in token))
        noise = np.random.normal(0, 5, 6)
        values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
    
    return list(zip(eras, values))

def generate_origin_data(token):
    """Generate simulated origin/etymology data for a token"""
    origins = [
        {"era": "Ancient", "language": "Latin"},
        {"era": "Ancient", "language": "Greek"},
        {"era": "Medieval", "language": "Old English"},
        {"era": "16th century", "language": "French"},
        {"era": "18th century", "language": "Germanic"},
        {"era": "19th century", "language": "Anglo-Saxon"},
        {"era": "20th century", "language": "Modern English"}
    ]
    
    # Deterministic selection based on the token
    index = sum(ord(c) for c in token) % len(origins)
    origin = origins[index]
    
    note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
    origin["note"] = note
    
    return origin

def analyze_token_types(tokens):
    """Identify token types (prefix, suffix, compound, etc.)"""
    processed_tokens = []
    
    prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"]
    suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"]
    
    for token in tokens:
        token_text = token.lower()
        token_type = "word"
        
        # Check for prefixes
        for prefix in prefixes:
            if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2:
                if token_text != prefix:  # Make sure the word isn't just the prefix
                    token_type = "prefix"
                    break
        
        # Check for suffixes
        if token_type == "word":
            for suffix in suffixes:
                if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2:
                    token_type = "suffix"
                    break
        
        # Check for compound words (simplified)
        if token_type == "word" and len(token_text) > 8:
            token_type = "compound_first"  # Simplified - in reality would need more analysis
        
        processed_tokens.append({
            "text": token_text,
            "type": token_type
        })
    
    return processed_tokens

def plot_historical_data(historical_data):
    """Create a plot of historical usage data, with error handling"""
    try:
        eras = [item[0] for item in historical_data]
        values = [item[1] for item in historical_data]
        
        plt.figure(figsize=(8, 3))
        plt.bar(eras, values, color='skyblue')
        plt.title('Historical Usage')
        plt.xlabel('Era')
        plt.ylabel('Usage Level')
        plt.ylim(0, 100)
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        return plt
    except Exception as e:
        print(f"Error in plot_historical_data: {str(e)}")
        # Return a simple error plot
        plt.figure(figsize=(8, 3))
        plt.text(0.5, 0.5, f"Error creating plot: {str(e)}", 
                 horizontalalignment='center', verticalalignment='center')
        plt.axis('off')
        return plt

def create_evolution_chart(data, forecast_months=6, growth_scenario="Moderate"):
    """Create a simpler chart that's more compatible with Gradio"""
    try:
        import plotly.graph_objects as go
        
        # Create a basic figure without subplots
        fig = go.Figure()
        
        # Add main trace for search volume
        fig.add_trace(
            go.Scatter(
                x=[item["month"] for item in data],
                y=[item["searchVolume"] for item in data],
                name="Search Volume",
                line=dict(color="#8884d8", width=3),
                mode="lines+markers"
            )
        )
        
        # Scale the other metrics to be visible on the same chart
        max_volume = max([item["searchVolume"] for item in data])
        scale_factor = max_volume / 100
        
        # Add competition score (scaled)
        fig.add_trace(
            go.Scatter(
                x=[item["month"] for item in data],
                y=[item["competitionScore"] * scale_factor for item in data],
                name="Competition Score",
                line=dict(color="#82ca9d", width=2, dash="dot"),
                mode="lines+markers"
            )
        )
        
        # Add intent clarity (scaled)
        fig.add_trace(
            go.Scatter(
                x=[item["month"] for item in data],
                y=[item["intentClarity"] * scale_factor for item in data],
                name="Intent Clarity",
                line=dict(color="#ffc658", width=2, dash="dash"),
                mode="lines+markers"
            )
        )
        
        # Simple layout
        fig.update_layout(
            title=f"Keyword Evolution Forecast ({growth_scenario} Growth)",
            xaxis_title="Month",
            yaxis_title="Value",
            legend=dict(orientation="h", y=1.1),
            height=500
        )
        
        return fig
        
    except Exception as e:
        print(f"Error in chart creation: {str(e)}")
        # Fallback to an even simpler chart
        fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2]))
        fig.update_layout(title="Fallback Chart (Error occurred)")
        return fig

def create_ranking_history_chart(keyword_history):
    """Create a chart showing keyword ranking history over time"""
    try:
        if not keyword_history or len(keyword_history) < 2:
            # Not enough data for a meaningful chart
            fig = go.Figure()
            fig.update_layout(
                title="Insufficient Ranking Data",
                annotations=[{
                    "text": "Need at least 2 data points for ranking history",
                    "showarrow": False,
                    "font": {"size": 16},
                    "xref": "paper",
                    "yref": "paper",
                    "x": 0.5,
                    "y": 0.5
                }]
            )
            return fig
        
        # Create a figure
        fig = go.Figure()
        
        # Extract timestamps and convert to datetime objects
        timestamps = [entry["timestamp"] for entry in keyword_history]
        dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps]
        
        # Get unique domains from all results
        all_domains = set()
        for entry in keyword_history:
            for result in entry["results"]:
                all_domains.add(result["domain"])
        
        # Colors for different domains
        domain_colors = {}
        color_palette = [
            "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
            "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"
        ]
        for i, domain in enumerate(all_domains):
            domain_colors[domain] = color_palette[i % len(color_palette)]
        
        # Track domains and their positions over time
        domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains}
        
        for i, entry in enumerate(keyword_history):
            for result in entry["results"]:
                domain = result["domain"]
                position = result["position"]
                title = result["title"]
                
                domain_tracking[domain]["x"].append(dates[i])
                domain_tracking[domain]["y"].append(position)
                domain_tracking[domain]["text"].append(title)
        
        # Add traces for each domain
        for domain, data in domain_tracking.items():
            if len(data["x"]) > 0:  # Only add domains that have data
                fig.add_trace(
                    go.Scatter(
                        x=data["x"],
                        y=data["y"],
                        mode="lines+markers",
                        name=domain,
                        line=dict(color=domain_colors[domain]),
                        hovertemplate="%{text}<br>Position: %{y}<br>Date: %{x}<extra></extra>",
                        text=data["text"],
                        marker=dict(size=8)
                    )
                )
        
        # Update layout
        fig.update_layout(
            title="Keyword Ranking History",
            xaxis_title="Date",
            yaxis_title="Position",
            yaxis=dict(autorange="reversed"),  # Invert y-axis so position 1 is on top
            hovermode="closest",
            height=500
        )
        
        return fig
    
    except Exception as e:
        print(f"Error in create_ranking_history_chart: {str(e)}")
        # Return fallback chart
        fig = go.Figure()
        fig.update_layout(
            title="Error Creating Ranking Chart",
            annotations=[{
                "text": f"Error: {str(e)}",
                "showarrow": False,
                "font": {"size": 14},
                "xref": "paper",
                "yref": "paper",
                "x": 0.5,
                "y": 0.5
            }]
        )
        return fig

def generate_serp_html(keyword, serp_results):
    """Generate HTML for SERP results"""
    if not serp_results:
        return "<div>No SERP results available</div>"
    
    html = f"""
    <div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
        <h2 style="margin-top: 0;">SERP Results for "{keyword}"</h2>
        
        <div style="background-color: #f5f5f5; padding: 10px; border-radius: 4px; margin-bottom: 20px;">
            <div style="color: #666; font-size: 12px;">This is a simulated SERP. In a real application, this would use the Google API.</div>
        </div>
        
        <div class="serp-results" style="display: flex; flex-direction: column; gap: 16px;">
    """
    
    for result in serp_results:
        position = result["position"]
        title = result["title"]
        url = result["url"]
        snippet = result["snippet"]
        domain = result["domain"]
        ctr = result["ctr_estimate"]
        impressions = result["impressions_estimate"]
        
        html += f"""
        <div class="serp-result" style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; position: relative;">
            <div style="position: absolute; top: -10px; left: -10px; background-color: #4299e1; color: white; width: 24px; height: 24px; border-radius: 50%; display: flex; align-items: center; justify-content: center; font-size: 12px;">
                {position}
            </div>
            <div style="margin-bottom: 5px;">
                <a href="#" style="font-size: 18px; color: #1a73e8; text-decoration: none; font-weight: 500;">{title}</a>
            </div>
            <div style="margin-bottom: 8px; color: #006621; font-size: 14px;">{url}</div>
            <div style="color: #4d5156; font-size: 14px;">{snippet}</div>
            
            <div style="display: flex; margin-top: 10px; font-size: 12px; color: #666;">
                <div style="margin-right: 15px;"><span style="font-weight: 500;">CTR:</span> {ctr:.2%}</div>
                <div><span style="font-weight: 500;">Est. Impressions:</span> {impressions:,}</div>
            </div>
        </div>
        """
    
    html += """
        </div>
    </div>
    """
    
    return html

def generate_token_visualization_html(token_analysis, full_analysis):
    """Generate HTML for token visualization"""
    html = """
    <div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
        <h2 style="margin-top: 0;">Token Visualization</h2>
        
        <div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;">
            <div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div>
            <div style="display: flex; flex-wrap: wrap; gap: 8px;">
    """
    
    # Add human view tokens
    for token in token_analysis:
        html += f"""
        <div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;">
            {token['text']}
        </div>
        """
    
    html += """
            </div>
        </div>
        
        <div style="text-align: center; margin: 15px 0;">
            <span style="font-size: 20px;">↓</span>
        </div>
        
        <div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;">
            <div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div>
            <div style="display: flex; flex-wrap: wrap; gap: 8px;">
    """
    
    # Add machine view tokens
    for token in full_analysis:
        bg_color = get_token_colors(token["type"])
        html += f"""
        <div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;">
            {token['token']}
            <span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span>
        </div>
        """
    
    html += """
            </div>
        </div>
        
        <div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;">
    """
    
    # Add stats
    word_count = len(token_analysis)
    token_count = len(full_analysis)
    ratio = round(token_count / max(1, word_count), 2)
    
    html += f"""
        <div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;">
            <div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div>
            <div style="font-size: 14px; color: #4299e1;">Words</div>
        </div>
        
        <div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;">
            <div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div>
            <div style="font-size: 14px; color: #48bb78;">Tokens</div>
        </div>
        
        <div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;">
            <div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div>
            <div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div>
        </div>
    """
    
    html += """
        </div>
    </div>
    """
    
    return html

def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends):
    """Generate HTML for full keyword analysis"""
    html = f"""
    <div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
        <h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2>
        
        <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;">
            <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
                <h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3>
                <div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
                    <span>Type:</span>
                    <span>{intent_analysis['type']}</span>
                </div>
                <div style="display: flex; justify-content: space-between; align-items: center;">
                    <span>Strength:</span>
                    <div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
                        <div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div>
                    </div>
                </div>
            </div>
            
            <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
                <h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3>
                <div style="display: flex; justify-content: center; align-items: center; height: 100px;">
                    <div style="position: relative; width: 100px; height: 100px;">
                        <div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;">
                            <span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span>
                        </div>
                        <svg width="100" height="100" viewBox="0 0 36 36">
                            <path
                              d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831"
                              fill="none"
                              stroke="#4CAF50"
                              stroke-width="3"
                              stroke-dasharray="{evolution_potential}, 100"
                            />
                        </svg>
                    </div>
                </div>
            </div>
        </div>
        
        <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;">
            <h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3>
            <div style="display: flex; flex-direction: column; gap: 8px;">
    """
    
    # Add trends
    for trend in trends:
        html += f"""
        <div style="display: flex; align-items: center; gap: 8px;">
            <span style="color: #48bb78;">β†—</span>
            <span>{trend}</span>
        </div>
        """
    
    html += """
            </div>
        </div>
        
        <h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3>
    """
    
    # Add token details
    for token in token_analysis:
        html += f"""
        <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;">
            <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
                <div style="display: flex; align-items: center; gap: 8px;">
                    <span style="font-size: 18px; font-weight: medium;">{token['token']}</span>
                    <span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span>
        """
        
        if token['entityType']:
            html += f"""
            <span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;">
                β“˜ {token['entityType']}
            </span>
            """
        
        html += f"""
                </div>
                <div style="display: flex; align-items: center; gap: 4px;">
                    <span style="font-size: 12px; color: #718096;">Importance:</span>
                    <div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
                        <div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div>
                    </div>
                </div>
            </div>
            
            <div style="margin-top: 15px;">
                <div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div>
                <div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;">
                    <div style="font-size: 12px; margin-bottom: 8px;">
                        <span style="font-weight: 500;">Origin: </span>
                        <span>{token['origin']['era']}, </span>
                        <span style="font-style: italic;">{token['origin']['language']}</span>
                    </div>
                    <div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div>
                    
                    <div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;">
        """
        
        # Add historical data bars
        for period, value in token['historicalData']:
            opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1)
            html += f"""
            <div style="display: flex; flex-direction: column; align-items: center; flex: 1;">
                <div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div>
                <div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;">
                    {period}
                </div>
            </div>
            """
        
        html += """
                    </div>
                </div>
            </div>
        </div>
        """
    
    html += """
    </div>
    """
    
    return html

def analyze_keyword(keyword, forecast_months=6, growth_scenario="Moderate", get_serp=False, progress=gr.Progress()):
    """Main function to analyze a keyword"""
    if not keyword or not keyword.strip():
        return (
            "<div>Please enter a keyword to analyze</div>",
            "<div>Please enter a keyword to analyze</div>", 
            None, 
            None,
            None,
            None,
            None
        )
    
    progress(0.1, desc="Starting analysis...")
    
    # Load models if not already loaded
    model_status = load_models(progress)
    if isinstance(model_status, str) and model_status.startswith("Error"):
        return (
            f"<div style='color:red;'>{model_status}</div>",
            f"<div style='color:red;'>{model_status}</div>",
            None,
            None,
            None,
            None,
            None
        )
    
    try:
        # Basic tokenization - just split on spaces for simplicity
        words = keyword.strip().lower().split()
        progress(0.2, desc="Analyzing tokens...")
        
        # Get token types
        token_analysis = analyze_token_types(words)
        
        progress(0.3, desc="Running NER...")
        # Get NER tags - handle potential errors
        try:
            ner_results = ner_pipeline(keyword)
        except Exception as e:
            print(f"NER error: {str(e)}")
            ner_results = []
        
        progress(0.4, desc="Running POS tagging...")
        # Get POS tags - handle potential errors
        try:
            pos_results = pos_pipeline(keyword)
        except Exception as e:
            print(f"POS error: {str(e)}")
            pos_results = []
        
        # Process and organize results
        full_token_analysis = []
        for token in token_analysis:
            # Find POS tag for this token
            pos_tag = "NOUN"  # Default
            for pos_result in pos_results:
                if pos_result["word"].lower() == token["text"]:
                    pos_tag = pos_result["entity"]
                    break
            
            # Find entity type if any
            entity_type = None
            for ner_result in ner_results:
                if ner_result["word"].lower() == token["text"]:
                    entity_type = ner_result["entity"]
                    break
            
            # Generate historical data
            historical_data = simulate_historical_data(token["text"])
            
            # Generate origin data
            origin = generate_origin_data(token["text"])
            
            # Calculate importance (simplified algorithm)
            importance = 60 + (len(token["text"]) * 2)
            importance = min(95, importance)
            
            # Generate more meaningful related terms using semantic similarity
            if semantic_model is not None:
                try:
                    # Generate some potential related terms
                    prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"]
                    synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"]
                    domain_terms = ["software", "marketing", "business", "science", "education", "technology"]
                    comparison_terms = prefix_related + synonym_candidates + domain_terms
                    
                    # Get similarities
                    similarities = get_semantic_similarity(token['text'], comparison_terms)
                    
                    # Use top 3 most similar terms
                    related_terms = [term for term, score in similarities[:3]]
                except Exception as e:
                    print(f"Error generating semantic related terms: {str(e)}")
                    related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
            else:
                # Fallback if semantic model isn't loaded
                related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
            
            full_token_analysis.append({
                "token": token["text"],
                "type": token["type"],
                "posTag": pos_tag,
                "entityType": entity_type,
                "importance": importance,
                "historicalData": historical_data,
                "origin": origin,
                "relatedTerms": related_terms
            })
        
        progress(0.5, desc="Analyzing intent...")
        # Intent analysis - handle potential errors
        try:
            intent_result = intent_classifier(
                keyword,
                candidate_labels=["informational", "navigational", "transactional"]
            )
            
            intent_analysis = {
                "type": intent_result["labels"][0].capitalize(),
                "strength": round(intent_result["scores"][0] * 100),
                "mutations": [
                    f"{intent_result['labels'][0]}-variation-1", 
                    f"{intent_result['labels'][0]}-variation-2"
                ]
            }
        except Exception as e:
            print(f"Intent classification error: {str(e)}")
            intent_analysis = {
                "type": "Informational",  # Default fallback
                "strength": 70,
                "mutations": ["fallback-variation-1", "fallback-variation-2"]
            }
        
        # Evolution potential (simplified calculation)
        evolution_potential = min(95, 65 + (len(keyword) % 30))
        
        # Predicted trends (simplified)
        trends = [
            "Voice search adaptation",
            "Visual search integration"
        ]
        
        # Generate more realistic and keyword-specific evolution data
        base_volume = 1000 + (len(keyword) * 100)
        
        # Adjust growth factor based on scenario
        if growth_scenario == "Conservative":
            growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5))
        elif growth_scenario == "Aggressive":
            growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5))
        else:  # Moderate
            growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5))
        
        evolution_data = []
        months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)]
        current_volume = base_volume
        
        for month in months:
            # Add some randomness to make it look more realistic
            np.random.seed(sum(ord(c) for c in month + keyword))
            random_factor = 0.9 + (0.2 * np.random.random())
            current_volume *= growth_factor * random_factor
            
            evolution_data.append({
                "month": month,
                "searchVolume": int(current_volume),
                "competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)),
                "intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5))
            })
        
        progress(0.6, desc="Creating visualizations...")
        # Create interactive evolution chart
        evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario)
        
        # SERP results and ranking history (new feature)
        serp_results = None
        ranking_chart = None
        serp_html = None
        
        if get_serp:
            progress(0.7, desc="Fetching SERP data...")
            # Get SERP results
            serp_results = simulate_google_serp(keyword)
            
            # Update ranking history
            update_ranking_history(keyword, serp_results)
            
            progress(0.8, desc="Creating ranking charts...")
            # Create ranking history chart
            if keyword in ranking_history and len(ranking_history[keyword]) > 0:
                ranking_chart = create_ranking_history_chart(ranking_history[keyword])
            
            # Generate SERP HTML
            serp_html = generate_serp_html(keyword, serp_results)
        
        # Generate HTML for token visualization
        token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
        
        # Generate HTML for full analysis
        analysis_html = generate_full_analysis_html(
            keyword, 
            full_token_analysis, 
            intent_analysis, 
            evolution_potential, 
            trends
        )
        
        # Generate JSON results
        json_results = {
            "keyword": keyword,
            "tokenAnalysis": full_token_analysis,
            "intentAnalysis": intent_analysis,
            "evolutionPotential": evolution_potential,
            "predictedTrends": trends,
            "forecast": {
                "months": forecast_months,
                "scenario": growth_scenario,
                "data": evolution_data
            },
            "serpResults": serp_results
        }
        
        progress(1.0, desc="Analysis complete!")
        return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword
    
    except Exception as e:
        error_message = f"<div style='color:red;padding:20px;'>Error analyzing keyword: {str(e)}</div>"
        print(f"Error in analyze_keyword: {str(e)}")
        return error_message, error_message, None, None, None, None, None

# Create the Gradio interface
with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown("# Keyword DNA Analyzer")
    gr.Markdown("Analyze the linguistic DNA of your keywords to understand their structure, intent, and potential.")
    
    with gr.Row():
        with gr.Column(scale=1):
            # Add voice search capabilities
            with gr.Group():
                gr.Markdown("### Enter Keyword")
                with gr.Row():
                    input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence")
                
                with gr.Row():
                    audio_input = gr.Audio(type="filepath", label="Or use voice search")
                    voice_submit_btn = gr.Button("Convert Voice to Text", variant="secondary")
            
            # Add SERP settings
            with gr.Accordion("Analysis Settings", open=False):
                with gr.Row():
                    forecast_months = gr.Slider(minimum=3, maximum=12, value=6, step=1, label="Forecast Months")
                    include_serp = gr.Checkbox(label="Include SERP Analysis", value=True)
                
                growth_scenario = gr.Radio(
                    ["Conservative", "Moderate", "Aggressive"], 
                    value="Moderate", 
                    label="Growth Scenario"
                )
            
            # Add loading indicator
            status_html = gr.HTML('<div style="color:gray;text-align:center;">Enter a keyword and click "Analyze DNA"</div>')
            
            analyze_btn = gr.Button("Analyze DNA", variant="primary")
            
            with gr.Row():
                example_btns = []
                for example in ["preprocessing", "breakdown", "artificial intelligence", "transformer model", "machine learning"]:
                    example_btns.append(gr.Button(example))
            
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("Token Visualization"):
                    token_viz_html = gr.HTML()
                
                with gr.Tab("Full Analysis"):
                    analysis_html = gr.HTML()
                
                with gr.Tab("Evolution Chart"):
                    evolution_chart = gr.Plot(label="Keyword Evolution Forecast")
                
                with gr.Tab("SERP Results"):
                    serp_html = gr.HTML()
                
                with gr.Tab("Ranking History"):
                    ranking_chart = gr.Plot(label="Keyword Ranking History")
                
                with gr.Tab("Raw Data"):
                    json_output = gr.JSON()
    
    # Voice to text conversion handler
    voice_submit_btn.click(
        handle_voice_input,
        inputs=[audio_input],
        outputs=[input_text]
    )
    
    # Set up event handlers
    analyze_btn.click(
        lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>',
        outputs=status_html
    ).then(
        analyze_keyword,
        inputs=[input_text, forecast_months, growth_scenario, include_serp],
        outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
    ).then(
        lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>',
        outputs=status_html
    )
    
    # Example buttons
    for btn in example_btns:
        # Define the function that will be called when an example button is clicked
        def set_example(btn_label):
            return btn_label
        
        btn.click(
            set_example,
            inputs=[btn],
            outputs=[input_text]
        ).then(
            lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>',
            outputs=status_html
        ).then(
            analyze_keyword,
            inputs=[input_text, forecast_months, growth_scenario, include_serp],
            outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
        ).then(
            lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>',
            outputs=status_html
        )

# Launch the app
if __name__ == "__main__":
    demo.launch()