File size: 8,297 Bytes
eb179f1
 
 
 
 
 
 
af60f36
 
 
eb179f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af60f36
eb179f1
 
 
 
 
 
af60f36
 
 
 
 
 
eb179f1
 
 
af60f36
eb179f1
af60f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb179f1
af60f36
 
 
 
eb179f1
af60f36
 
 
 
 
 
 
 
 
 
 
eb179f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
from PIL import Image
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.models as models
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
import gc

# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the main classifier (Main_Classifier_best_model.pth)
main_model = models.resnet18(weights=None)  # Updated: weights=None
num_ftrs = main_model.fc.in_features
main_model.fc = nn.Linear(num_ftrs, 3)  # 3 classes: Soda drinks, Clothing, Mobile Phones
main_model.load_state_dict(torch.load('Main_Classifier_best_model.pth', map_location=device, weights_only=True))  # Updated: weights_only=True
main_model = main_model.to(device)
main_model.eval()

# Define class names for the main classifier based on folder structure
main_class_names = ['Clothing', 'Mobile Phones', 'Soda drinks']

# Sub-classifier models
def load_soda_drinks_model():
    model = models.resnet18(weights=None)  # Updated: weights=None
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 3)  # 3 classes: Miranda, Pepsi, Seven Up
    model.load_state_dict(torch.load('Soda_drinks_best_model.pth', map_location=device, weights_only=True))  # Updated
    model = model.to(device)
    model.eval()
    return model

def load_clothing_model():
    model = models.resnet18(weights=None)  # Updated: weights=None
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 3)  # 2 classes: Pants, T-Shirt
    model.load_state_dict(torch.load('Clothes_best_model.pth', map_location=device, weights_only=True))  # Updated
    model = model.to(device)
    model.eval()
    return model

def load_mobile_phones_model():
    model = models.resnet18(weights=None)  # Updated: weights=None
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 2)  # 2 classes: Apple, Samsung
    model.load_state_dict(torch.load('Phone_best_model.pth', map_location=device, weights_only=True))  # Updated
    model = model.to(device)
    model.eval()
    return model

def convert_to_rgb(image):
    """
    Converts 'P' mode images with transparency to 'RGBA', and then to 'RGB'.
    This is to avoid transparency issues during model training.
    """
    if image.mode in ('P', 'RGBA'):
        return image.convert('RGB')
    return image

# Define preprocessing transformations (same used during training)
preprocess = transforms.Compose([
    transforms.Lambda(convert_to_rgb),
    transforms.Resize((224, 224)),  # Resize here, no need for shape argument in gr.Image
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # ImageNet normalization
])


# Load Meta's LLaMA model for generating product descriptions
def load_llama():
    model_name = "meta-llama/Llama-3.2-1B-Instruct"  
    token = os.getenv("HUGGINGFACE_TOKEN") 
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
    model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token).to(device)
     # Initialize the text generation pipeline with the prepared model
    text_generation = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer
    )
    return tokenizer, model
llama_tokenizer, llama_model = load_llama()

# Generate product description using external data and structured format
def generate_description(category, subclass):
    # Define file path and read content
    file_path = 'data for product description.txt'
    with open(file_path, 'r', encoding='utf-8') as file:
        file_content = file.read()

    prompt = f"""
    [Data]
    {file_content}
    Role: You are a product description content writer with 10 years of experience in the market. Generate a product description for a {subclass} in the {category} category based on the [Data] provided.
    Follow the [Instructions] strictly:
    [Instructions]
    - Create a detailed product description for a {subclass} in the {category} category based on the [Data].
    - Use the structured format below, making each section clear and concise.
    - Highlight key product features, technical specifications, and the target audience.
    """

    generated_texts = llama_model.generate(
        inputs=llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device),
        max_length=7000,
        max_new_tokens=2000,
        do_sample=True,
        temperature=0.7,
        top_k=50,
        top_p=0.95,
    )

    description = llama_tokenizer.decode(generated_texts[0], skip_special_tokens=True)
    
    # Clean up resources
    torch.cuda.empty_cache()
    gc.collect()

    return description


# # Generate product description using LLaMA
# def generate_description(category, subclass):
#     prompt = f"Generate a detailed and engaging product description for a {category} of type {subclass}."
    
#     inputs = llama_tokenizer.encode(prompt, return_tensors="pt").to(device)
#     outputs = llama_model.generate(inputs, max_length=100, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
#     description = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
    
#     return description


def classify_image(image):
    # Open the image using PIL
    image = Image.fromarray(image)

    # Preprocess the image
    input_image = preprocess(image).unsqueeze(0).to(device)

    # Perform inference with the main classifier
    with torch.no_grad():
        output = main_model(input_image)
        probabilities = torch.nn.functional.softmax(output[0], dim=0)
        confidence, predicted_class = torch.max(probabilities, 0)

    # Main classifier result
    main_prediction = main_class_names[predicted_class]
    main_confidence = confidence.item()
    if main_confidence <=0.90:
        main_prediction = 'Others'
        main_confidence = 100-main_confidence
        sub_prediction = "Undefined"
        sub_confidence = -100
        description = None
    # Load and apply the sub-classifier based on the main classification
    if main_prediction in ['Clothing', 'Mobile Phones', 'Soda drinks']:
        if main_prediction == 'Soda drinks':
            soda_model = load_soda_drinks_model()
            sub_class_names = ['Miranda', 'Pepsi', 'Seven Up']
            with torch.no_grad():
                sub_output = soda_model(input_image)
        elif main_prediction == 'Clothing':
            clothing_model = load_clothing_model()
            sub_class_names = ['Pants', 'T-Shirt','others']
            with torch.no_grad():
                sub_output = clothing_model(input_image)
        elif main_prediction == 'Mobile Phones':
            phones_model = load_mobile_phones_model()
            sub_class_names = ['Apple', 'Samsung']
            with torch.no_grad():
                sub_output = phones_model(input_image)
    
        # Perform inference with the sub-classifier
        sub_probabilities = torch.nn.functional.softmax(sub_output[0], dim=0)
        sub_confidence, sub_predicted_class = torch.max(sub_probabilities, 0)
    
        sub_prediction = sub_class_names[sub_predicted_class]
        sub_confidence = sub_confidence.item()
        
        if sub_confidence < 0.90 :
            sub_prediction = "Others"
            sub_confidence =  100- sub_confidence
            description=None
        else:
            # Generate product description
            description = generate_description(main_prediction, sub_prediction)

    return f"Main Predicted Class: {main_prediction} (Confidence: {main_confidence:.4f})", \
           f"Sub Predicted Class: {sub_prediction} (Confidence: {sub_confidence:.4f})", \
           f"Product Description: {description}"

# Gradio interface (updated)
image_input = gr.Image(image_mode="RGB")  # Removed shape argument
output_text = gr.Textbox()

gr.Interface(fn=classify_image, inputs=image_input, outputs=[output_text], 
             title="Main and Sub-Classifier System product description ",
             description="Upload an image to classify whether it belongs to Clothing, Mobile Phones, or Soda Drinks. Based on the prediction, it will further classify within the subcategory and generate a detailed product description .",
             theme="default").launch()