Spaces:
Sleeping
Sleeping
File size: 15,533 Bytes
6c9d6da 9cc96e3 6c9d6da 8f06cb3 6c9d6da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
#------------------------------------------------------------------------
# Import Modules
#------------------------------------------------------------------------
import streamlit as st
import spacy
import string
from annotated_text import annotated_text
from PIL import Image
spacy.cli.download("en_core_web_sm") # Download and install the model
# Load the English NLP model
nlp = spacy.load("en_core_web_sm")
#------------------------------------------------------------------------
# Configurations
#------------------------------------------------------------------------
# Streamlit page setup
# icon = Image.open("MTSS.ai_Icon.png")
icon = Image.open("MTSS.ai_Icon.png")
st.set_page_config(
page_title="Kaleidoscope | Text Annotation",
page_icon=icon,
layout="centered",
initial_sidebar_state="auto",
menu_items={
'About': "### *This application was created by* \n### LeVesseur Ph.D | MTSS.ai"
}
)
#------------------------------------------------------------------------
# Header
#------------------------------------------------------------------------
# st.image('MTSS.ai_Logo.png', width=300)
st.title('MTSS:grey[.ai]')
st.header('Kaleidoscope:grey[ | Parts of Speech Annotation]')
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
contact = st.sidebar.toggle('Handmade by \n**LeVesseur** :grey[ PhD] \n| :grey[MTSS.ai]')
if contact:
st.sidebar.write('Inquiries: [info@mtss.ai](mailto:info@mtss.ai) \nProfile: [levesseur.com](http://levesseur.com) \nCheck out: [InkQA | Dynamic PDFs](http://www.inkqa.com)')
# Color options
colors = {
"Green (DAF1E7)": "#DAF1E7",
"Blue (BDE5FF)": "#BDE5FF",
"Navy (D1DBE9)": "#D1DBE9",
"Teal (D6EAED)": "#D6EAED",
"Iceburg (E4EEF6)": "#E4EEF6",
"Vermillion (F6DCDD)": "#F6DCDD",
}
with st.sidebar:
st.divider()
# Sidebar display (Option 1: Color blocks with hex)
st.sidebar.header("Recommended Colors")
for color_name, hex_code in colors.items():
st.sidebar.color_picker(color_name, hex_code)
st.subheader("Example")
annotated_text(
("I", "Pronoun", "#F6DCDD"),
" ",
"really",
" ",
("appreciate", "Verb", "#DAF1E7"),
" ",
("all", "Pronoun", "#F6DCDD"),
" ",
("that", "Pronoun", "#F6DCDD"),
" ",
"the",
" ",
("social", "Adj", "#BDE5FF"),
" ",
"committee",
" ",
"has",
" ",
("done", "Verb", "#DAF1E7"),
" ",
"to",
" ",
("keep", "Verb", "#DAF1E7"),
" ",
("us", "Pronoun", "#F6DCDD"),
" ",
("feeling", "Verb", "#DAF1E7"),
" ",
("connected", "Adj", "#BDE5FF"),
" ",
".",
" ",
"I",
" ",
"also",
" ",
"really",
" ",
("value", "Verb", "#DAF1E7"),
" ",
("our", "Pronoun", "#F6DCDD"),
" ",
"in",
" ",
"-person",
" ",
("meetings", "Noun", "#D1DBE9"),
" ",
"and",
" ",
"the",
" ",
"social",
" ",
("opportunities", "Noun", "#D1DBE9"),
" ",
("built", "Verb", "#DAF1E7"),
" ",
"into",
" ",
"these",
" ",
"meetings",
" ",
".",
)
st.divider()
st.subheader("Directions for Using the Text Annotation Tool")
directions = """
1. **Enter Your Text**:
- Type the text you want to annotate in the text area provided.
2. **Select Parts of Speech**:
- Choose which parts of speech you want to include in the annotation by checking the corresponding boxes (e.g., Verbs, Adjectives, Nouns, Pronouns).
3. **Submit Your Text**:
- Click the "Submit Text" button to process your input. The app will automatically label and color the words based on the selected parts of speech.
4. **Review the Annotations**:
- The annotated text will be displayed, showing the parts of speech labels and colors applied to the words.
5. **Adjust Annotations (Optional)**:
- You can manually adjust the labels and colors for each word if needed.
6. **Generate Annotated Text**:
- After reviewing and adjusting the annotations, click the "Generate Annotated Text" button.
- The final annotated text will be displayed.
7. **Take a Screenshot**:
- To use the annotated text, take a screenshot of the displayed text.
8. **Adjust Text Width** (Optional):
- If you want to adjust the width of the sentences for a better screenshot, minimize or resize your browser window accordingly before taking the screenshot.
"""
st.markdown(directions)
#------------------------------------------------------------------------
# Functions: Parts of Speech
#------------------------------------------------------------------------
# # Function to split text into words
# def split_text(text):
# # Add a space before punctuation marks
# for char in string.punctuation:
# text = text.replace(char, f" {char}")
# return text.split()
# # Function to automatically label and color words based on parts of speech
# def auto_label_and_color_words(doc, words):
# labels = [""] * len(words)
# colors = ["#FFFFFF"] * len(words)
# word_positions = {i: word for i, word in enumerate(words)}
# for token in doc:
# # Match token with the words from the original text
# for index, word in word_positions.items():
# if token.text == word:
# if token.pos_ == "VERB":
# labels[index] = "Verb"
# colors[index] = "#DAF1E7"
# elif token.pos_ == "ADJ":
# labels[index] = "Adj"
# colors[index] = "#BDE5FF"
# elif token.pos_ == "NOUN":
# labels[index] = "Noun"
# colors[index] = "#D1DBE9"
# elif token.pos_ == "PRON":
# labels[index] = "Pronoun"
# colors[index] = "#F6DCDD"
# break # Exit loop once the word is found and processed
# return labels, colors
# # Main Streamlit application
# st.title("Text Annotation Tool")
# # Initialize session state to store text and annotations
# if 'user_text' not in st.session_state:
# st.session_state.user_text = ""
# if 'words' not in st.session_state:
# st.session_state.words = []
# if 'labels' not in st.session_state:
# st.session_state.labels = []
# if 'colors' not in st.session_state:
# st.session_state.colors = []
# if 'extracted_pos' not in st.session_state:
# st.session_state.extracted_pos = {}
# # User input for the text
# user_text = st.text_area("Enter the text you want to annotate:", value=st.session_state.user_text, height=100)
# # Button to process the text
# if st.button("Submit Text"):
# st.session_state.user_text = user_text
# st.session_state.words = split_text(user_text)
# # Process the text with spaCy
# doc = nlp(user_text)
# # Automatically label and color words based on parts of speech
# st.session_state.labels, st.session_state.colors = auto_label_and_color_words(doc, st.session_state.words)
# # Extract parts of speech
# st.session_state.extracted_pos = {
# "verbs": [token.text for token in doc if token.pos_ == "VERB"],
# "adjectives": [token.text for token in doc if token.pos_ == "ADJ"],
# "nouns": [token.text for token in doc if token.pos_ == "NOUN"],
# "pronouns": [token.text for token in doc if token.pos_ == "PRON"]
# }
# # Display extracted parts of speech
# if st.session_state.extracted_pos:
# st.subheader("Extracted Parts of Speech")
# st.write("**Verbs:**", st.session_state.extracted_pos.get("verbs", []))
# st.write("**Adjectives:**", st.session_state.extracted_pos.get("adjectives", []))
# st.write("**Nouns:**", st.session_state.extracted_pos.get("nouns", []))
# st.write("**Pronouns:**", st.session_state.extracted_pos.get("pronouns", []))
# # Collect annotation inputs for each word
# if st.session_state.words:
# for i, word in enumerate(st.session_state.words):
# st.write(f"Annotate the word: {word}")
# st.session_state.labels[i] = st.selectbox(
# f"Label for '{word}'", ["", "Verb", "Adj", "Noun", "Pronoun"],
# key=f"label_{i}", index=["", "Verb", "Adj", "Noun", "Pronoun"].index(st.session_state.labels[i])
# )
# st.session_state.colors[i] = st.color_picker(
# f"Color for '{word}'",
# value=st.session_state.colors[i],
# key=f"color_{i}"
# )
# # Generate button to process the annotations
# if st.button("Generate Annotated Text"):
# annotated_elements = []
# for i, word in enumerate(st.session_state.words):
# if st.session_state.labels[i] and st.session_state.colors[i] != "#FFFFFF":
# annotated_elements.append((word, st.session_state.labels[i], st.session_state.colors[i]))
# else:
# annotated_elements.append(word)
# annotated_elements.append(" ") # Add space between words
# # Remove the last extra space added
# if annotated_elements and annotated_elements[-1] == " ":
# annotated_elements.pop()
# # Display the annotated text using the `annotated_text` function
# st.subheader("Annotated Text:")
# annotated_text(*annotated_elements)
# # Print the code for the annotated text
# st.subheader("Generated Code:")
# code_str = 'annotated_text(\n'
# for elem in annotated_elements:
# if isinstance(elem, tuple):
# code_str += f' ("{elem[0]}", "{elem[1]}", "{elem[2]}"),\n'
# else:
# code_str += f' "{elem}",\n'
# code_str += ')'
# st.code(code_str, language='python')
#------------------------------------------------------------------------
# Functions: Parts of Speech + Buttons
#------------------------------------------------------------------------
# Function to split text into words
def split_text(text):
# Add a space before punctuation marks
for char in string.punctuation:
text = text.replace(char, f" {char}")
return text.split()
# Function to automatically label and color words based on parts of speech
def auto_label_and_color_words(doc, words, include_verbs, include_adjectives, include_nouns, include_pronouns):
labels = [""] * len(words)
colors = ["#FFFFFF"] * len(words)
word_positions = {i: word for i, word in enumerate(words)}
for token in doc:
# Match token with the words from the original text
for index, word in word_positions.items():
if token.text == word:
if token.pos_ == "VERB" and include_verbs:
labels[index] = "Verb"
colors[index] = "#DAF1E7"
elif token.pos_ == "ADJ" and include_adjectives:
labels[index] = "Adj"
colors[index] = "#BDE5FF"
elif token.pos_ == "NOUN" and include_nouns:
labels[index] = "Noun"
colors[index] = "#D1DBE9"
elif token.pos_ == "PRON" and include_pronouns:
labels[index] = "Pronoun"
colors[index] = "#F6DCDD"
break # Exit loop once the word is found and processed
return labels, colors
# Initialize session state to store text and annotations
if 'user_text' not in st.session_state:
st.session_state.user_text = ""
if 'words' not in st.session_state:
st.session_state.words = []
if 'labels' not in st.session_state:
st.session_state.labels = []
if 'colors' not in st.session_state:
st.session_state.colors = []
if 'extracted_pos' not in st.session_state:
st.session_state.extracted_pos = {}
# User input for the text
user_text = st.text_area("Enter the text you want to annotate:", value=st.session_state.user_text, height=100)
# Checkboxes for parts of speech to include
include_verbs = st.checkbox("Include Verbs", value=True)
include_adjectives = st.checkbox("Include Adjectives", value=True)
include_nouns = st.checkbox("Include Nouns", value=True)
include_pronouns = st.checkbox("Include Pronouns", value=True)
# Button to process the text
if st.button("Submit Text"):
st.session_state.user_text = user_text
st.session_state.words = split_text(user_text)
# Process the text with spaCy
doc = nlp(user_text)
# Automatically label and color words based on parts of speech
st.session_state.labels, st.session_state.colors = auto_label_and_color_words(
doc, st.session_state.words, include_verbs, include_adjectives, include_nouns, include_pronouns)
# Extract parts of speech
st.session_state.extracted_pos = {
"verbs": [token.text for token in doc if token.pos_ == "VERB"],
"adjectives": [token.text for token in doc if token.pos_ == "ADJ"],
"nouns": [token.text for token in doc if token.pos_ == "NOUN"],
"pronouns": [token.text for token in doc if token.pos_ == "PRON"]
}
# Display extracted parts of speech
if st.session_state.extracted_pos:
st.subheader("Extracted Parts of Speech")
st.write("**Verbs:**", st.session_state.extracted_pos.get("verbs", []))
st.write("**Adjectives:**", st.session_state.extracted_pos.get("adjectives", []))
st.write("**Nouns:**", st.session_state.extracted_pos.get("nouns", []))
st.write("**Pronouns:**", st.session_state.extracted_pos.get("pronouns", []))
# Collect annotation inputs for each word
if st.session_state.words:
for i, word in enumerate(st.session_state.words):
st.write(f"Annotate the word: {word}")
st.session_state.labels[i] = st.selectbox(
f"Label for '{word}'", ["", "Verb", "Adj", "Noun", "Pronoun"],
key=f"label_{i}", index=["", "Verb", "Adj", "Noun", "Pronoun"].index(st.session_state.labels[i])
)
st.session_state.colors[i] = st.color_picker(
f"Color for '{word}'",
value=st.session_state.colors[i],
key=f"color_{i}"
)
# Generate button to process the annotations
if st.button("Generate Annotated Text", type="primary"):
annotated_elements = []
for i, word in enumerate(st.session_state.words):
if st.session_state.labels[i] and st.session_state.colors[i] != "#FFFFFF":
annotated_elements.append((word, st.session_state.labels[i], st.session_state.colors[i]))
else:
annotated_elements.append(word)
annotated_elements.append(" ") # Add space between words
# Remove the last extra space added
if annotated_elements and annotated_elements[-1] == " ":
annotated_elements.pop()
# Display the annotated text using the `annotated_text` function
st.subheader("Annotated Text:")
annotated_text(*annotated_elements)
# Print the code for the annotated text
st.subheader("Generated Code:")
code_str = 'annotated_text(\n'
for elem in annotated_elements:
if isinstance(elem, tuple):
code_str += f' ("{elem[0]}", "{elem[1]}", "{elem[2]}"),\n'
else:
code_str += f' "{elem}",\n'
code_str += ')'
st.code(code_str, language='python') |