File size: 6,055 Bytes
823b52c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import pandas as pd
import os
import re
from huggingface_hub import InferenceClient
class DataProcessor:
INTERVENTION_COLUMN = 'Did the intervention happen today?'
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
def __init__(self):
self.hf_api_key = os.getenv('HF_API_KEY')
if not self.hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
self.client = InferenceClient(api_key=self.hf_api_key)
def read_excel(self, uploaded_file):
return pd.read_excel(uploaded_file)
def format_session_data(self, df):
df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
return df
def safe_convert_to_time(self, series, format_str='%I:%M %p'):
try:
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to time: {e}")
return series
def safe_convert_to_datetime(self, series, format_str=None):
try:
converted = pd.to_datetime(series, errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to datetime: {e}")
return series
def replace_student_names_with_initials(self, df):
updated_columns = []
for col in df.columns:
if col.startswith('Student Attendance'):
match = re.match(r'Student Attendance \[(.+?)\]', col)
if match:
name = match.group(1)
name_parts = name.split()
if len(name_parts) == 1:
initials = name_parts[0][0]
else:
initials = ''.join([part[0] for part in name_parts])
updated_columns.append(f'Student Attendance [{initials}]')
else:
updated_columns.append(col)
else:
updated_columns.append(col)
df.columns = updated_columns
return df
def compute_intervention_statistics(self, df):
total_days = len(df)
sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
intervention_frequency = round(intervention_frequency, 0)
stats = {
'Intervention Frequency (%)': [intervention_frequency],
'Intervention Sessions Held': [sessions_held],
'Intervention Sessions Not Held': [sessions_not_held],
'Total Number of Days Available': [total_days]
}
return pd.DataFrame(stats)
def compute_student_metrics(self, df):
intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
intervention_sessions_held = len(intervention_df)
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
student_metrics = {}
for col in student_columns:
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
student_data = intervention_df[[col]].copy()
student_data[col] = student_data[col].fillna('Absent')
attendance_values = student_data[col].apply(lambda x: 1 if x in [
self.ENGAGED_STR,
self.PARTIALLY_ENGAGED_STR,
self.NOT_ENGAGED_STR
] else 0)
sessions_attended = attendance_values.sum()
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
attendance_pct = round(attendance_pct)
engagement_counts = {
'Engaged': 0,
'Partially Engaged': 0,
'Not Engaged': 0,
'Absent': 0
}
for x in student_data[col]:
if x == self.ENGAGED_STR:
engagement_counts['Engaged'] += 1
elif x == self.PARTIALLY_ENGAGED_STR:
engagement_counts['Partially Engaged'] += 1
elif x == self.NOT_ENGAGED_STR:
engagement_counts['Not Engaged'] += 1
else:
engagement_counts['Absent'] += 1
total_sessions = sum(engagement_counts.values())
engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
engagement_pct = round(engagement_pct)
student_metrics[student_name] = {
'Attendance (%)': attendance_pct,
'Attendance #': sessions_attended,
'Engagement (%)': engagement_pct
}
return pd.DataFrame.from_dict(student_metrics, orient='index').reset_index().rename(columns={'index': 'Student'})
def compute_average_metrics(self, student_metrics_df):
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean()
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean()
return round(attendance_avg_stats), round(engagement_avg_stats) |