Spaces:
Build error
Build error
File size: 64,621 Bytes
e0f66ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import chain
import logging
import math
from pathlib import Path
import random
import re
import typing as tp
import warnings
import einops
from num2words import num2words
import spacy
from transformers import RobertaTokenizer, T5EncoderModel, T5Tokenizer # type: ignore
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from .chroma import ChromaExtractor
from .streaming import StreamingModule
from .transformer import create_sin_embedding
from ..data.audio import audio_read
from ..data.audio_dataset import SegmentInfo
from ..data.audio_utils import convert_audio
from ..environment import AudioCraftEnvironment
from ..quantization import ResidualVectorQuantizer
from ..utils.autocast import TorchAutocast
from ..utils.cache import EmbeddingCache
from ..utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once
logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str] # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask
class WavCondition(tp.NamedTuple):
wav: torch.Tensor
length: torch.Tensor
sample_rate: tp.List[int]
path: tp.List[tp.Optional[str]] = []
seek_time: tp.List[tp.Optional[float]] = []
class JointEmbedCondition(tp.NamedTuple):
wav: torch.Tensor
text: tp.List[tp.Optional[str]]
length: torch.Tensor
sample_rate: tp.List[int]
path: tp.List[tp.Optional[str]] = []
seek_time: tp.List[tp.Optional[float]] = []
@dataclass
class ConditioningAttributes:
text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
wav: tp.Dict[str, WavCondition] = field(default_factory=dict)
joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)
def __getitem__(self, item):
return getattr(self, item)
@property
def text_attributes(self):
return self.text.keys()
@property
def wav_attributes(self):
return self.wav.keys()
@property
def joint_embed_attributes(self):
return self.joint_embed.keys()
@property
def attributes(self):
return {
"text": self.text_attributes,
"wav": self.wav_attributes,
"joint_embed": self.joint_embed_attributes,
}
def to_flat_dict(self):
return {
**{f"text.{k}": v for k, v in self.text.items()},
**{f"wav.{k}": v for k, v in self.wav.items()},
**{f"joint_embed.{k}": v for k, v in self.joint_embed.items()}
}
@classmethod
def from_flat_dict(cls, x):
out = cls()
for k, v in x.items():
kind, att = k.split(".")
out[kind][att] = v
return out
class SegmentWithAttributes(SegmentInfo):
"""Base class for all dataclasses that are used for conditioning.
All child classes should implement `to_condition_attributes` that converts
the existing attributes to a dataclass of type ConditioningAttributes.
"""
def to_condition_attributes(self) -> ConditioningAttributes:
raise NotImplementedError()
def nullify_condition(condition: ConditionType, dim: int = 1):
"""Transform an input condition to a null condition.
The way it is done by converting it to a single zero vector similarly
to how it is done inside WhiteSpaceTokenizer and NoopTokenizer.
Args:
condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor])
dim (int): The dimension that will be truncated (should be the time dimension)
WARNING!: dim should not be the batch dimension!
Returns:
ConditionType: A tuple of null condition and mask
"""
assert dim != 0, "dim cannot be the batch dimension!"
assert isinstance(condition, tuple) and \
isinstance(condition[0], torch.Tensor) and \
isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!"
cond, mask = condition
B = cond.shape[0]
last_dim = cond.dim() - 1
out = cond.transpose(dim, last_dim)
out = 0. * out[..., :1]
out = out.transpose(dim, last_dim)
mask = torch.zeros((B, 1), device=out.device).int()
assert cond.dim() == out.dim()
return out, mask
def nullify_wav(cond: WavCondition) -> WavCondition:
"""Transform a WavCondition to a nullified WavCondition.
It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes.
Args:
cond (WavCondition): Wav condition with wav, tensor of shape [B, T].
Returns:
WavCondition: Nullified wav condition.
"""
null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1)
return WavCondition(
wav=null_wav,
length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device),
sample_rate=cond.sample_rate,
path=[None] * cond.wav.shape[0],
seek_time=[None] * cond.wav.shape[0],
)
def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition:
"""Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0,
and replacing metadata by dummy attributes.
Args:
cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T].
"""
null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1)
return JointEmbedCondition(
wav=null_wav, text=[None] * len(embed.text),
length=torch.LongTensor([0]).to(embed.wav.device),
sample_rate=embed.sample_rate,
path=[None] * embed.wav.shape[0],
seek_time=[0] * embed.wav.shape[0],
)
class Tokenizer:
"""Base tokenizer implementation
(in case we want to introduce more advances tokenizers in the future).
"""
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError()
class WhiteSpaceTokenizer(Tokenizer):
"""This tokenizer should be used for natural language descriptions.
For example:
["he didn't, know he's going home.", 'shorter sentence'] =>
[[78, 62, 31, 4, 78, 25, 19, 34],
[59, 77, 0, 0, 0, 0, 0, 0]]
"""
PUNCTUATION = "?:!.,;"
def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm",
lemma: bool = True, stopwords: bool = True) -> None:
self.n_bins = n_bins
self.pad_idx = pad_idx
self.lemma = lemma
self.stopwords = stopwords
try:
self.nlp = spacy.load(language)
except IOError:
spacy.cli.download(language) # type: ignore
self.nlp = spacy.load(language)
@tp.no_type_check
def __call__(self, texts: tp.List[tp.Optional[str]],
return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Take a list of strings and convert them to a tensor of indices.
Args:
texts (list[str]): List of strings.
return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False.
Returns:
tuple[torch.Tensor, torch.Tensor]:
- Indices of words in the LUT.
- And a mask indicating where the padding tokens are
"""
output, lengths = [], []
texts = deepcopy(texts)
for i, text in enumerate(texts):
# if current sample doesn't have a certain attribute, replace with pad token
if text is None:
output.append(torch.Tensor([self.pad_idx]))
lengths.append(0)
continue
# convert numbers to words
text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text) # type: ignore
# normalize text
text = self.nlp(text) # type: ignore
# remove stopwords
if self.stopwords:
text = [w for w in text if not w.is_stop] # type: ignore
# remove punctuation
text = [w for w in text if w.text not in self.PUNCTUATION] # type: ignore
# lemmatize if needed
text = [getattr(t, "lemma_" if self.lemma else "text") for t in text] # type: ignore
texts[i] = " ".join(text)
lengths.append(len(text))
# convert to tensor
tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text])
output.append(tokens)
mask = length_to_mask(torch.IntTensor(lengths)).int()
padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t()
if return_text:
return padded_output, mask, texts # type: ignore
return padded_output, mask
class NoopTokenizer(Tokenizer):
"""This tokenizer should be used for global conditioners such as: artist, genre, key, etc.
The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split
strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will
split it to ["Jeff", "Buckley"] and return an index per word.
For example:
["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101]
["Metal", "Rock", "Classical"] => [0, 223, 51]
"""
def __init__(self, n_bins: int, pad_idx: int = 0):
self.n_bins = n_bins
self.pad_idx = pad_idx
def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
output, lengths = [], []
for text in texts:
# if current sample doesn't have a certain attribute, replace with pad token
if text is None:
output.append(self.pad_idx)
lengths.append(0)
else:
output.append(hash_trick(text, self.n_bins))
lengths.append(1)
tokens = torch.LongTensor(output).unsqueeze(1)
mask = length_to_mask(torch.IntTensor(lengths)).int()
return tokens, mask
class BaseConditioner(nn.Module):
"""Base model for all conditioner modules.
We allow the output dim to be different than the hidden dim for two reasons:
1) keep our LUTs small when the vocab is large;
2) make all condition dims consistent.
Args:
dim (int): Hidden dim of the model.
output_dim (int): Output dim of the conditioner.
"""
def __init__(self, dim: int, output_dim: int):
super().__init__()
self.dim = dim
self.output_dim = output_dim
self.output_proj = nn.Linear(dim, output_dim)
def tokenize(self, *args, **kwargs) -> tp.Any:
"""Should be any part of the processing that will lead to a synchronization
point, e.g. BPE tokenization with transfer to the GPU.
The returned value will be saved and return later when calling forward().
"""
raise NotImplementedError()
def forward(self, inputs: tp.Any) -> ConditionType:
"""Gets input that should be used as conditioning (e.g, genre, description or a waveform).
Outputs a ConditionType, after the input data was embedded as a dense vector.
Returns:
ConditionType:
- A tensor of size [B, T, D] where B is the batch size, T is the length of the
output embedding and D is the dimension of the embedding.
- And a mask indicating where the padding tokens.
"""
raise NotImplementedError()
class TextConditioner(BaseConditioner):
...
class LUTConditioner(TextConditioner):
"""Lookup table TextConditioner.
Args:
n_bins (int): Number of bins.
dim (int): Hidden dim of the model (text-encoder/LUT).
output_dim (int): Output dim of the conditioner.
tokenizer (str): Name of the tokenizer.
pad_idx (int, optional): Index for padding token. Defaults to 0.
"""
def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0):
super().__init__(dim, output_dim)
self.embed = nn.Embedding(n_bins, dim)
self.tokenizer: Tokenizer
if tokenizer == 'whitespace':
self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx)
elif tokenizer == 'noop':
self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx)
else:
raise ValueError(f"unrecognized tokenizer `{tokenizer}`.")
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
device = self.embed.weight.device
tokens, mask = self.tokenizer(x)
tokens, mask = tokens.to(device), mask.to(device)
return tokens, mask
def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType:
tokens, mask = inputs
embeds = self.embed(tokens)
embeds = self.output_proj(embeds)
embeds = (embeds * mask.unsqueeze(-1))
return embeds, mask
class T5Conditioner(TextConditioner):
"""T5-based TextConditioner.
Args:
name (str): Name of the T5 model.
output_dim (int): Output dim of the conditioner.
finetune (bool): Whether to fine-tune T5 at train time.
device (str): Device for T5 Conditioner.
autocast_dtype (tp.Optional[str], optional): Autocast dtype.
word_dropout (float, optional): Word dropout probability.
normalize_text (bool, optional): Whether to apply text normalization.
"""
MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
"google/flan-t5-xl", "google/flan-t5-xxl"]
MODELS_DIMS = {
"t5-small": 512,
"t5-base": 768,
"t5-large": 1024,
"t5-3b": 1024,
"t5-11b": 1024,
"google/flan-t5-small": 512,
"google/flan-t5-base": 768,
"google/flan-t5-large": 1024,
"google/flan-t5-3b": 1024,
"google/flan-t5-11b": 1024,
}
def __init__(self, name: str, output_dim: int, finetune: bool, device: str,
autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0.,
normalize_text: bool = False):
assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})"
super().__init__(self.MODELS_DIMS[name], output_dim)
self.device = device
self.name = name
self.finetune = finetune
self.word_dropout = word_dropout
if autocast_dtype is None or self.device == 'cpu':
self.autocast = TorchAutocast(enabled=False)
if self.device != 'cpu':
logger.warning("T5 has no autocast, this might lead to NaN")
else:
dtype = getattr(torch, autocast_dtype)
assert isinstance(dtype, torch.dtype)
logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}")
self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
# Let's disable logging temporarily because T5 will vomit some errors otherwise.
# thanks https://gist.github.com/simon-weber/7853144
previous_level = logging.root.manager.disable
logging.disable(logging.ERROR)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
self.t5_tokenizer = T5Tokenizer.from_pretrained(name)
t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune)
finally:
logging.disable(previous_level)
if finetune:
self.t5 = t5
else:
# this makes sure that the t5 models is not part
# of the saved checkpoint
self.__dict__['t5'] = t5.to(device)
self.normalize_text = normalize_text
if normalize_text:
self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True)
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
# if current sample doesn't have a certain attribute, replace with empty string
entries: tp.List[str] = [xi if xi is not None else "" for xi in x]
if self.normalize_text:
_, _, entries = self.text_normalizer(entries, return_text=True)
if self.word_dropout > 0. and self.training:
new_entries = []
for entry in entries:
words = [word for word in entry.split(" ") if random.random() >= self.word_dropout]
new_entries.append(" ".join(words))
entries = new_entries
empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""])
inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device)
mask = inputs['attention_mask']
mask[empty_idx, :] = 0 # zero-out index where the input is non-existant
return inputs
def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
mask = inputs['attention_mask']
with torch.set_grad_enabled(self.finetune), self.autocast:
embeds = self.t5(**inputs).last_hidden_state
embeds = self.output_proj(embeds.to(self.output_proj.weight))
embeds = (embeds * mask.unsqueeze(-1))
return embeds, mask
class WaveformConditioner(BaseConditioner):
"""Base class for all conditioners that take a waveform as input.
Classes that inherit must implement `_get_wav_embedding` that outputs
a continuous tensor, and `_downsampling_factor` that returns the down-sampling
factor of the embedding model.
Args:
dim (int): The internal representation dimension.
output_dim (int): Output dimension.
device (tp.Union[torch.device, str]): Device.
"""
def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]):
super().__init__(dim, output_dim)
self.device = device
def tokenize(self, x: WavCondition) -> WavCondition:
wav, length, sample_rate, path, seek_time = x
assert length is not None
return WavCondition(wav.to(self.device), length.to(self.device), sample_rate, path, seek_time)
def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
"""Gets as input a WavCondition and returns a dense embedding."""
raise NotImplementedError()
def _downsampling_factor(self):
"""Returns the downsampling factor of the embedding model."""
raise NotImplementedError()
def forward(self, x: WavCondition) -> ConditionType:
"""Extract condition embedding and mask from a waveform and its metadata.
Args:
x (WavCondition): Waveform condition containing raw waveform and metadata.
Returns:
ConditionType: a dense vector representing the conditioning along with its mask
"""
wav, lengths, *_ = x
with torch.no_grad():
embeds = self._get_wav_embedding(x)
embeds = embeds.to(self.output_proj.weight)
embeds = self.output_proj(embeds)
if lengths is not None:
lengths = lengths / self._downsampling_factor()
mask = length_to_mask(lengths, max_len=embeds.shape[1]).int() # type: ignore
else:
mask = torch.ones_like(embeds)
embeds = (embeds * mask.unsqueeze(2).to(self.device))
return embeds, mask
class ChromaStemConditioner(WaveformConditioner):
"""Chroma conditioner based on stems.
The ChromaStemConditioner uses DEMUCS to first filter out drums and bass, as
the drums and bass often dominate the chroma leading to the chroma features
not containing information about the melody.
Args:
output_dim (int): Output dimension for the conditioner.
sample_rate (int): Sample rate for the chroma extractor.
n_chroma (int): Number of chroma bins for the chroma extractor.
radix2_exp (int): Size of stft window for the chroma extractor (power of 2, e.g. 12 -> 2^12).
duration (int): duration used during training. This is later used for correct padding
in case we are using chroma as prefix.
match_len_on_eval (bool, optional): if True then all chromas are padded to the training
duration. Defaults to False.
eval_wavs (str, optional): path to a dataset manifest with waveform, this waveforms are used as
conditions during eval (for cases where we don't want to leak test conditions like MusicCaps).
Defaults to None.
n_eval_wavs (int, optional): limits the number of waveforms used for conditioning. Defaults to 0.
device (tp.Union[torch.device, str], optional): Device for the conditioner.
**kwargs: Additional parameters for the chroma extractor.
"""
def __init__(self, output_dim: int, sample_rate: int, n_chroma: int, radix2_exp: int,
duration: float, match_len_on_eval: bool = True, eval_wavs: tp.Optional[str] = None,
n_eval_wavs: int = 0, cache_path: tp.Optional[tp.Union[str, Path]] = None,
device: tp.Union[torch.device, str] = 'cpu', **kwargs):
from demucs import pretrained
super().__init__(dim=n_chroma, output_dim=output_dim, device=device)
self.autocast = TorchAutocast(enabled=device != 'cpu', device_type=self.device, dtype=torch.float32)
self.sample_rate = sample_rate
self.match_len_on_eval = match_len_on_eval
self.duration = duration
self.__dict__['demucs'] = pretrained.get_model('htdemucs').to(device)
stem_sources: list = self.demucs.sources # type: ignore
self.stem_indices = torch.LongTensor([stem_sources.index('vocals'), stem_sources.index('other')]).to(device)
self.chroma = ChromaExtractor(sample_rate=sample_rate, n_chroma=n_chroma,
radix2_exp=radix2_exp, **kwargs).to(device)
self.chroma_len = self._get_chroma_len()
self.eval_wavs: tp.Optional[torch.Tensor] = self._load_eval_wavs(eval_wavs, n_eval_wavs)
self.cache = None
if cache_path is not None:
self.cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
compute_embed_fn=self._get_full_chroma_for_cache,
extract_embed_fn=self._extract_chroma_chunk)
def _downsampling_factor(self) -> int:
return self.chroma.winhop
def _load_eval_wavs(self, path: tp.Optional[str], num_samples: int) -> tp.Optional[torch.Tensor]:
"""Load pre-defined waveforms from a json.
These waveforms will be used for chroma extraction during evaluation.
This is done to make the evaluation on MusicCaps fair (we shouldn't see the chromas of MusicCaps).
"""
if path is None:
return None
logger.info(f"Loading evaluation wavs from {path}")
from audiocraft.data.audio_dataset import AudioDataset
dataset: AudioDataset = AudioDataset.from_meta(
path, segment_duration=self.duration, min_audio_duration=self.duration,
sample_rate=self.sample_rate, channels=1)
if len(dataset) > 0:
eval_wavs = dataset.collater([dataset[i] for i in range(num_samples)]).to(self.device)
logger.info(f"Using {len(eval_wavs)} evaluation wavs for chroma-stem conditioner")
return eval_wavs
else:
raise ValueError("Could not find evaluation wavs, check lengths of wavs")
def reset_eval_wavs(self, eval_wavs: tp.Optional[torch.Tensor]) -> None:
self.eval_wavs = eval_wavs
def has_eval_wavs(self) -> bool:
return self.eval_wavs is not None
def _sample_eval_wavs(self, num_samples: int) -> torch.Tensor:
"""Sample wavs from a predefined list."""
assert self.eval_wavs is not None, "Cannot sample eval wavs as no eval wavs provided."
total_eval_wavs = len(self.eval_wavs)
out = self.eval_wavs
if num_samples > total_eval_wavs:
out = self.eval_wavs.repeat(num_samples // total_eval_wavs + 1, 1, 1)
return out[torch.randperm(len(out))][:num_samples]
def _get_chroma_len(self) -> int:
"""Get length of chroma during training."""
dummy_wav = torch.zeros((1, int(self.sample_rate * self.duration)), device=self.device)
dummy_chr = self.chroma(dummy_wav)
return dummy_chr.shape[1]
@torch.no_grad()
def _get_stemmed_wav(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
"""Get parts of the wav that holds the melody, extracting the main stems from the wav."""
from demucs.apply import apply_model
from demucs.audio import convert_audio
with self.autocast:
wav = convert_audio(
wav, sample_rate, self.demucs.samplerate, self.demucs.audio_channels) # type: ignore
stems = apply_model(self.demucs, wav, device=self.device)
stems = stems[:, self.stem_indices] # extract relevant stems for melody conditioning
mix_wav = stems.sum(1) # merge extracted stems to single waveform
mix_wav = convert_audio(mix_wav, self.demucs.samplerate, self.sample_rate, 1) # type: ignore
return mix_wav
@torch.no_grad()
def _extract_chroma(self, wav: torch.Tensor) -> torch.Tensor:
"""Extract chroma features from the waveform."""
with self.autocast:
return self.chroma(wav)
@torch.no_grad()
def _compute_wav_embedding(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
"""Compute wav embedding, applying stem and chroma extraction."""
# avoid 0-size tensors when we are working with null conds
if wav.shape[-1] == 1:
return self._extract_chroma(wav)
stems = self._get_stemmed_wav(wav, sample_rate)
chroma = self._extract_chroma(stems)
return chroma
@torch.no_grad()
def _get_full_chroma_for_cache(self, path: tp.Union[str, Path], x: WavCondition, idx: int) -> torch.Tensor:
"""Extract chroma from the whole audio waveform at the given path."""
wav, sr = audio_read(path)
wav = wav[None].to(self.device)
wav = convert_audio(wav, sr, self.sample_rate, to_channels=1)
chroma = self._compute_wav_embedding(wav, self.sample_rate)[0]
return chroma
def _extract_chroma_chunk(self, full_chroma: torch.Tensor, x: WavCondition, idx: int) -> torch.Tensor:
"""Extract a chunk of chroma from the full chroma derived from the full waveform."""
wav_length = x.wav.shape[-1]
seek_time = x.seek_time[idx]
assert seek_time is not None, (
"WavCondition seek_time is required "
"when extracting chroma chunks from pre-computed chroma.")
full_chroma = full_chroma.float()
frame_rate = self.sample_rate / self._downsampling_factor()
target_length = int(frame_rate * wav_length / self.sample_rate)
index = int(frame_rate * seek_time)
out = full_chroma[index: index + target_length]
out = F.pad(out[None], (0, 0, 0, target_length - out.shape[0]))[0]
return out.to(self.device)
@torch.no_grad()
def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
"""Get the wav embedding from the WavCondition.
The conditioner will either extract the embedding on-the-fly computing it from the condition wav directly
or will rely on the embedding cache to load the pre-computed embedding if relevant.
"""
sampled_wav: tp.Optional[torch.Tensor] = None
if not self.training and self.eval_wavs is not None:
warn_once(logger, "Using precomputed evaluation wavs!")
sampled_wav = self._sample_eval_wavs(len(x.wav))
no_undefined_paths = all(p is not None for p in x.path)
no_nullified_cond = x.wav.shape[-1] > 1
if sampled_wav is not None:
chroma = self._compute_wav_embedding(sampled_wav, self.sample_rate)
elif self.cache is not None and no_undefined_paths and no_nullified_cond:
paths = [Path(p) for p in x.path if p is not None]
chroma = self.cache.get_embed_from_cache(paths, x)
else:
assert all(sr == x.sample_rate[0] for sr in x.sample_rate), "All sample rates in batch should be equal."
chroma = self._compute_wav_embedding(x.wav, x.sample_rate[0])
if self.match_len_on_eval:
B, T, C = chroma.shape
if T > self.chroma_len:
chroma = chroma[:, :self.chroma_len]
logger.debug(f"Chroma was truncated to match length! ({T} -> {chroma.shape[1]})")
elif T < self.chroma_len:
n_repeat = int(math.ceil(self.chroma_len / T))
chroma = chroma.repeat(1, n_repeat, 1)
chroma = chroma[:, :self.chroma_len]
logger.debug(f"Chroma was repeated to match length! ({T} -> {chroma.shape[1]})")
return chroma
def tokenize(self, x: WavCondition) -> WavCondition:
"""Apply WavConditioner tokenization and populate cache if needed."""
x = super().tokenize(x)
no_undefined_paths = all(p is not None for p in x.path)
if self.cache is not None and no_undefined_paths:
paths = [Path(p) for p in x.path if p is not None]
self.cache.populate_embed_cache(paths, x)
return x
class JointEmbeddingConditioner(BaseConditioner):
"""Joint embedding conditioning supporting both audio or text conditioning.
Args:
dim (int): Dimension.
output_dim (int): Output dimension.
device (str): Device.
attribute (str): Attribute used by the conditioner.
autocast_dtype (str): Autocast for the conditioner.
quantize (bool): Whether to quantize the CLAP embedding.
n_q (int): Number of residual quantizers (used if quantize is true).
bins (int): Quantizers' codebooks size (used if quantize is true).
kwargs: Additional parameters for residual vector quantizer.
"""
def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
autocast_dtype: tp.Optional[str] = 'float32', quantize: bool = True,
n_q: int = 12, bins: int = 1024, **kwargs):
super().__init__(dim=dim, output_dim=output_dim)
self.device = device
self.attribute = attribute
if autocast_dtype is None or device == 'cpu':
self.autocast = TorchAutocast(enabled=False)
logger.warning("JointEmbeddingConditioner has no autocast, this might lead to NaN.")
else:
dtype = getattr(torch, autocast_dtype)
assert isinstance(dtype, torch.dtype)
logger.info(f"JointEmbeddingConditioner will be evaluated with autocast as {autocast_dtype}.")
self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
# residual vector quantizer to discretize the conditioned embedding
self.quantizer: tp.Optional[ResidualVectorQuantizer] = None
if quantize:
self.quantizer = ResidualVectorQuantizer(dim, n_q=n_q, bins=bins, **kwargs)
def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Get joint embedding in latent space from the inputs.
Returns:
tuple[torch.Tensor, torch.Tensor]: Tensor for the latent embedding
and corresponding empty indexes.
"""
raise NotImplementedError()
def forward(self, x: JointEmbedCondition) -> ConditionType:
with self.autocast:
embed, empty_idx = self._get_embed(x)
if self.quantizer is not None:
embed = embed.view(-1, self.dim, 1)
q_res = self.quantizer(embed, frame_rate=1)
out_embed = q_res.x.view(-1, self.dim)
else:
out_embed = embed
out_embed = self.output_proj(out_embed).view(-1, 1, self.output_dim)
mask = torch.ones(*out_embed.shape[:2], device=out_embed.device)
mask[empty_idx, :] = 0 # zero-out index where the input is non-existant
out_embed = (out_embed * mask.unsqueeze(-1))
return out_embed, mask
def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
return x
class CLAPEmbeddingConditioner(JointEmbeddingConditioner):
"""Joint Embedding conditioner based on pre-trained CLAP model.
This CLAP-based conditioner supports a caching mechanism
over the computed embeddings for faster training.
Args:
dim (int): Dimension.
output_dim (int): Output dimension.
device (str): Device.
attribute (str): Attribute used by the conditioner.
quantize (bool): Whether to quantize the CLAP embedding.
n_q (int): Number of residual quantizers (used if quantize is true).
bins (int): Quantizers' codebooks size (used if quantize is true).
checkpoint (str): Path to CLAP checkpoint.
model_arch (str): CLAP model architecture.
enable_fusion (bool): Enable fusion for CLAP model.
sample_rate (int): Sample rate used by CLAP model.
max_audio_length (float): Maximum audio length for CLAP model.
audio_stride (float): Stride to use for getting a CLAP embedding on the full sequence.
normalize (bool): Whether to normalize the CLAP embedding.
text_p (float): Probability of using text representation instead of audio at train time.
batch_size (Optional[int]): Batch size for CLAP embedding computation.
autocast_dtype (str): Autocast for the conditioner.
cache_path (Optional[str]): Path for pre-computed embeddings caching.
kwargs: Additional parameters for residual vector quantizer.
"""
def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
quantize: bool, n_q: int, bins: int, checkpoint: tp.Union[str, Path], model_arch: str,
enable_fusion: bool, sample_rate: int, max_audio_length: int, audio_stride: int,
normalize: bool, text_p: bool, batch_size: tp.Optional[int] = None,
autocast_dtype: tp.Optional[str] = 'float32', cache_path: tp.Optional[str] = None, **kwargs):
try:
import laion_clap # type: ignore
except ImportError:
raise ImportError("Please install CLAP to use the CLAPEmbeddingConditioner: 'pip install laion_clap'")
checkpoint = AudioCraftEnvironment.resolve_reference_path(checkpoint)
clap_tokenize = RobertaTokenizer.from_pretrained('roberta-base')
clap_model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=model_arch)
load_clap_state_dict(clap_model, checkpoint)
clap_model.eval()
clap_model.to(device)
super().__init__(dim=dim, output_dim=output_dim, device=device, attribute=attribute,
autocast_dtype=autocast_dtype, quantize=quantize, n_q=n_q, bins=bins,
**kwargs)
self.checkpoint = checkpoint
self.enable_fusion = enable_fusion
self.model_arch = model_arch
self.clap: laion_clap.CLAP_Module
self.clap_tokenize: RobertaTokenizer
self.clap_sample_rate = sample_rate
self.clap_max_frames = int(self.clap_sample_rate * max_audio_length)
self.clap_stride = int(self.clap_sample_rate * audio_stride)
self.batch_size = batch_size or 1
self.normalize = normalize
self.text_p = text_p
self.__dict__['clap_tokenize'] = clap_tokenize
self.__dict__['clap'] = clap_model
self.wav_cache, self.text_cache = None, None
if cache_path is not None:
self.wav_cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
compute_embed_fn=self._get_wav_embedding_for_cache,
extract_embed_fn=self._extract_wav_embedding_chunk)
self.text_cache = EmbeddingCache(Path(cache_path) / 'text', self.device,
compute_embed_fn=self._get_text_embedding_for_cache)
def _tokenizer(self, texts: tp.Union[str, tp.List[str]]) -> dict:
# we use the default params from CLAP module here as well
return self.clap_tokenize(texts, padding="max_length", truncation=True, max_length=77, return_tensors="pt")
def _compute_text_embedding(self, text: tp.List[str]) -> torch.Tensor:
"""Compute text embedding from CLAP model on a given a batch of text.
Args:
text (list[str]): List of text for the batch, with B items.
Returns:
torch.Tensor: CLAP embedding derived from text, of shape [B, 1, D], with D the CLAP embedding dimension.
"""
with torch.no_grad():
embed = self.clap.get_text_embedding(text, tokenizer=self._tokenizer, use_tensor=True)
return embed.view(embed.size(0), 1, embed.size(-1))
def _get_text_embedding_for_cache(self, path: tp.Union[Path, str],
x: JointEmbedCondition, idx: int) -> torch.Tensor:
"""Get text embedding function for the cache."""
text = x.text[idx]
text = text if text is not None else ""
return self._compute_text_embedding([text])[0]
def _preprocess_wav(self, wav: torch.Tensor, length: torch.Tensor, sample_rates: tp.List[int]) -> torch.Tensor:
"""Preprocess wav to expected format by CLAP model.
Args:
wav (torch.Tensor): Audio wav, of shape [B, C, T].
length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
sample_rates (list[int]): Sample rates for each sample in the batch
Returns:
torch.Tensor: Audio wav of shape [B, T].
"""
assert wav.dim() == 3, "Expecting wav to be [B, C, T]"
if sample_rates is not None:
_wav = []
for i, audio in enumerate(wav):
sr = sample_rates[i]
audio = convert_audio(audio, from_rate=sr, to_rate=self.clap_sample_rate, to_channels=1)
_wav.append(audio)
wav = torch.stack(_wav, dim=0)
wav = wav.mean(dim=1)
return wav
def _compute_wav_embedding(self, wav: torch.Tensor, length: torch.Tensor,
sample_rates: tp.List[int], reduce_mean: bool = False) -> torch.Tensor:
"""Compute audio wave embedding from CLAP model.
Since CLAP operates on a fixed sequence length audio inputs and we need to process longer audio sequences,
we calculate the wav embeddings on `clap_max_frames` windows with `clap_stride`-second stride and
average the resulting embeddings.
Args:
wav (torch.Tensor): Audio wav, of shape [B, C, T].
length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
sample_rates (list[int]): Sample rates for each sample in the batch.
reduce_mean (bool): Whether to get the average tensor.
Returns:
torch.Tensor: Audio embedding of shape [B, F, D], F being the number of chunks, D the dimension.
"""
with torch.no_grad():
wav = self._preprocess_wav(wav, length, sample_rates)
B, T = wav.shape
if T >= self.clap_max_frames:
wav = wav.unfold(-1, self.clap_max_frames, self.clap_stride) # [B, F, T]
else:
wav = wav.view(-1, 1, T) # [B, F, T] with F=1
wav = einops.rearrange(wav, 'b f t -> (b f) t')
embed_list = []
for i in range(0, wav.size(0), self.batch_size):
_wav = wav[i:i+self.batch_size, ...]
_embed = self.clap.get_audio_embedding_from_data(_wav, use_tensor=True)
embed_list.append(_embed)
embed = torch.cat(embed_list, dim=0)
embed = einops.rearrange(embed, '(b f) d -> b f d', b=B)
if reduce_mean:
embed = embed.mean(dim=1, keepdim=True)
return embed # [B, F, D] with F=1 if reduce_mean is True
def _get_wav_embedding_for_cache(self, path: tp.Union[str, Path],
x: JointEmbedCondition, idx: int) -> torch.Tensor:
"""Compute audio wave embedding for the cache.
The embedding is computed on a given audio read from file.
Args:
path (str or Path): Path to the full audio file.
Returns:
torch.Tensor: Single-item tensor of shape [F, D], F being the number of chunks, D the dimension.
"""
wav, sr = audio_read(path) # [C, T]
wav = wav.unsqueeze(0).to(self.device) # [1, C, T]
wav_len = torch.LongTensor([wav.shape[-1]]).to(self.device)
embed = self._compute_wav_embedding(wav, wav_len, [sr], reduce_mean=False) # [B, F, D]
return embed.squeeze(0) # [F, D]
def _extract_wav_embedding_chunk(self, full_embed: torch.Tensor, x: JointEmbedCondition, idx: int) -> torch.Tensor:
"""Extract the chunk of embedding matching the seek_time and length from the full CLAP audio embedding.
Args:
full_embed (torch.Tensor): CLAP embedding computed on the full wave, of shape [F, D].
x (JointEmbedCondition): Joint embedding condition for the full batch.
idx (int): Index considered for the given embedding to extract.
Returns:
torch.Tensor: Wav embedding averaged on sliding window, of shape [1, D].
"""
sample_rate = x.sample_rate[idx]
seek_time = x.seek_time[idx]
seek_time = 0. if seek_time is None else seek_time
clap_stride = int(self.clap_stride / self.clap_sample_rate) * sample_rate
end_seek_time = seek_time + self.clap_max_frames / self.clap_sample_rate
start_offset = int(seek_time * sample_rate // clap_stride)
end_offset = int(end_seek_time * sample_rate // clap_stride)
wav_embed = full_embed[start_offset:end_offset, ...]
wav_embed = wav_embed.mean(dim=0, keepdim=True)
return wav_embed.to(self.device) # [F, D]
def _get_text_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
"""Get CLAP embedding from a batch of text descriptions."""
no_nullified_cond = x.wav.shape[-1] > 1 # we don't want to read from cache when condition dropout
if self.text_cache is not None and no_nullified_cond:
assert all(p is not None for p in x.path), "Cache requires all JointEmbedCondition paths to be provided"
paths = [Path(p) for p in x.path if p is not None]
embed = self.text_cache.get_embed_from_cache(paths, x)
else:
text = [xi if xi is not None else "" for xi in x.text]
embed = self._compute_text_embedding(text)
if self.normalize:
embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
return embed
def _get_wav_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
"""Get CLAP embedding from a batch of audio tensors (and corresponding sample rates)."""
no_undefined_paths = all(p is not None for p in x.path)
no_nullified_cond = x.wav.shape[-1] > 1 # we don't want to read from cache when condition dropout
if self.wav_cache is not None and no_undefined_paths and no_nullified_cond:
paths = [Path(p) for p in x.path if p is not None]
embed = self.wav_cache.get_embed_from_cache(paths, x)
else:
embed = self._compute_wav_embedding(x.wav, x.length, x.sample_rate, reduce_mean=True)
if self.normalize:
embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
return embed
def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
# Trying to limit as much as possible sync points when the cache is warm.
no_undefined_paths = all(p is not None for p in x.path)
if self.wav_cache is not None and no_undefined_paths:
assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
paths = [Path(p) for p in x.path if p is not None]
self.wav_cache.populate_embed_cache(paths, x)
if self.text_cache is not None and no_undefined_paths:
assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
paths = [Path(p) for p in x.path if p is not None]
self.text_cache.populate_embed_cache(paths, x)
return x
def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Extract shared latent representation from either the wav or the text using CLAP."""
# decide whether to use text embedding at train time or not
use_text_embed = random.random() < self.text_p
if self.training and not use_text_embed:
embed = self._get_wav_embedding(x)
empty_idx = torch.LongTensor([]) # we assume we always have the audio wav
else:
embed = self._get_text_embedding(x)
empty_idx = torch.LongTensor([i for i, xi in enumerate(x.text) if xi is None or xi == ""])
return embed, empty_idx
def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes:
"""Utility function for nullifying an attribute inside an ConditioningAttributes object.
If the condition is of type "wav", then nullify it using `nullify_condition` function.
If the condition is of any other type, set its value to None.
Works in-place.
"""
if condition_type not in ['text', 'wav', 'joint_embed']:
raise ValueError(
"dropout_condition got an unexpected condition type!"
f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'"
)
if condition not in getattr(sample, condition_type):
raise ValueError(
"dropout_condition received an unexpected condition!"
f" expected wav={sample.wav.keys()} and text={sample.text.keys()}"
f" but got '{condition}' of type '{condition_type}'!"
)
if condition_type == 'wav':
wav_cond = sample.wav[condition]
sample.wav[condition] = nullify_wav(wav_cond)
elif condition_type == 'joint_embed':
embed = sample.joint_embed[condition]
sample.joint_embed[condition] = nullify_joint_embed(embed)
else:
sample.text[condition] = None
return sample
class DropoutModule(nn.Module):
"""Base module for all dropout modules."""
def __init__(self, seed: int = 1234):
super().__init__()
self.rng = torch.Generator()
self.rng.manual_seed(seed)
class AttributeDropout(DropoutModule):
"""Dropout with a given probability per attribute.
This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
must also be dropped.
Args:
p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
...
"genre": 0.1,
"artist": 0.5,
"wav": 0.25,
...
active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
seed (int, optional): Random seed.
"""
def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
super().__init__(seed=seed)
self.active_on_eval = active_on_eval
# construct dict that return the values from p otherwise 0
self.p = {}
for condition_type, probs in p.items():
self.p[condition_type] = defaultdict(lambda: 0, probs)
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
"""
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
"""
if not self.training and not self.active_on_eval:
return samples
samples = deepcopy(samples)
for condition_type, ps in self.p.items(): # for condition types [text, wav]
for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre])
if torch.rand(1, generator=self.rng).item() < p:
for sample in samples:
dropout_condition(sample, condition_type, condition)
return samples
def __repr__(self):
return f"AttributeDropout({dict(self.p)})"
class ClassifierFreeGuidanceDropout(DropoutModule):
"""Classifier Free Guidance dropout.
All attributes are dropped with the same probability.
Args:
p (float): Probability to apply condition dropout during training.
seed (int): Random seed.
"""
def __init__(self, p: float, seed: int = 1234):
super().__init__(seed=seed)
self.p = p
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
"""
Args:
samples (list[ConditioningAttributes]): List of conditions.
Returns:
list[ConditioningAttributes]: List of conditions after all attributes were set to None.
"""
if not self.training:
return samples
# decide on which attributes to drop in a batched fashion
drop = torch.rand(1, generator=self.rng).item() < self.p
if not drop:
return samples
# nullify conditions of all attributes
samples = deepcopy(samples)
for condition_type in ["wav", "text"]:
for sample in samples:
for condition in sample.attributes[condition_type]:
dropout_condition(sample, condition_type, condition)
return samples
def __repr__(self):
return f"ClassifierFreeGuidanceDropout(p={self.p})"
class ConditioningProvider(nn.Module):
"""Prepare and provide conditions given all the supported conditioners.
Args:
conditioners (dict): Dictionary of conditioners.
device (torch.device or str, optional): Device for conditioners and output condition types.
"""
def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"):
super().__init__()
self.device = device
self.conditioners = nn.ModuleDict(conditioners)
@property
def joint_embed_conditions(self):
return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)]
@property
def has_joint_embed_conditions(self):
return len(self.joint_embed_conditions) > 0
@property
def text_conditions(self):
return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]
@property
def wav_conditions(self):
return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)]
@property
def has_wav_condition(self):
return len(self.wav_conditions) > 0
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
"""Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
This should be called before starting any real GPU work to avoid synchronization points.
This will return a dict matching conditioner names to their arbitrary tokenized representations.
Args:
inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
text and wav conditions.
"""
assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
"Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
f" but types were {set([type(x) for x in inputs])}"
)
output = {}
text = self._collate_text(inputs)
wavs = self._collate_wavs(inputs)
joint_embeds = self._collate_joint_embeds(inputs)
assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), (
f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
f"got {text.keys(), wavs.keys(), joint_embeds.keys()}"
)
for attribute, batch in chain(text.items(), wavs.items(), joint_embeds.items()):
output[attribute] = self.conditioners[attribute].tokenize(batch)
return output
def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]:
"""Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
The output is for example:
{
"genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
"description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
...
}
Args:
tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
"""
output = {}
for attribute, inputs in tokenized.items():
condition, mask = self.conditioners[attribute](inputs)
output[attribute] = (condition, mask)
return output
def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
"""Given a list of ConditioningAttributes objects, compile a dictionary where the keys
are the attributes and the values are the aggregated input per attribute.
For example:
Input:
[
ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...),
]
Output:
{
"genre": ["Rock", "Hip-hop"],
"description": ["A rock song with a guitar solo", "A hip-hop verse"]
}
Args:
samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
Returns:
dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
"""
out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
texts = [x.text for x in samples]
for text in texts:
for condition in self.text_conditions:
out[condition].append(text[condition])
return out
def _collate_wavs(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, WavCondition]:
"""Generate a dict where the keys are attributes by which we fetch similar wavs,
and the values are Tensors of wavs according to said attributes.
*Note*: by the time the samples reach this function, each sample should have some waveform
inside the "wav" attribute. It should be either:
1. A real waveform
2. A null waveform due to the sample having no similar waveforms (nullified by the dataset)
3. A null waveform due to it being dropped in a dropout module (nullified by dropout)
Args:
samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
Returns:
dict[str, WavCondition]: A dictionary mapping an attribute name to wavs.
"""
wavs = defaultdict(list)
lengths = defaultdict(list)
sample_rates = defaultdict(list)
paths = defaultdict(list)
seek_times = defaultdict(list)
out: tp.Dict[str, WavCondition] = {}
for sample in samples:
for attribute in self.wav_conditions:
wav, length, sample_rate, path, seek_time = sample.wav[attribute]
assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]"
assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1"
# mono-channel conditioning
wav = wav.mean(1, keepdim=True) # [1, 1, T]
wavs[attribute].append(wav.flatten()) # [T]
lengths[attribute].append(length)
sample_rates[attribute].extend(sample_rate)
paths[attribute].extend(path)
seek_times[attribute].extend(seek_time)
# stack all wavs to a single tensor
for attribute in self.wav_conditions:
stacked_wav, _ = collate(wavs[attribute], dim=0)
out[attribute] = WavCondition(
stacked_wav.unsqueeze(1), torch.cat(lengths[attribute]), sample_rates[attribute],
paths[attribute], seek_times[attribute])
return out
def _collate_joint_embeds(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, JointEmbedCondition]:
"""Generate a dict where the keys are attributes by which we compute joint embeddings,
and the values are Tensors of pre-computed embeddings and the corresponding text attributes.
Args:
samples (list[ConditioningAttributes]): List of ConditioningAttributes samples.
Returns:
A dictionary mapping an attribute name to joint embeddings.
"""
texts = defaultdict(list)
wavs = defaultdict(list)
lengths = defaultdict(list)
sample_rates = defaultdict(list)
paths = defaultdict(list)
seek_times = defaultdict(list)
channels: int = 0
out = {}
for sample in samples:
for attribute in self.joint_embed_conditions:
wav, text, length, sample_rate, path, seek_time = sample.joint_embed[attribute]
assert wav.dim() == 3
if channels == 0:
channels = wav.size(1)
else:
assert channels == wav.size(1), "not all audio has same number of channels in batch"
assert wav.size(0) == 1, "Expecting single-wav batch in the collate method"
wav = einops.rearrange(wav, "b c t -> (b c t)") # [1, C, T] => [C * T]
wavs[attribute].append(wav)
texts[attribute].extend(text)
lengths[attribute].append(length)
sample_rates[attribute].extend(sample_rate)
paths[attribute].extend(path)
seek_times[attribute].extend(seek_time)
for attribute in self.joint_embed_conditions:
stacked_texts = texts[attribute]
stacked_paths = paths[attribute]
stacked_seek_times = seek_times[attribute]
stacked_wavs = pad_sequence(wavs[attribute]).to(self.device)
stacked_wavs = einops.rearrange(stacked_wavs, "(c t) b -> b c t", c=channels)
stacked_sample_rates = sample_rates[attribute]
stacked_lengths = torch.cat(lengths[attribute]).to(self.device)
assert stacked_lengths.size(0) == stacked_wavs.size(0)
assert len(stacked_sample_rates) == stacked_wavs.size(0)
assert len(stacked_texts) == stacked_wavs.size(0)
out[attribute] = JointEmbedCondition(
text=stacked_texts, wav=stacked_wavs,
length=stacked_lengths, sample_rate=stacked_sample_rates,
path=stacked_paths, seek_time=stacked_seek_times)
return out
class ConditionFuser(StreamingModule):
"""Condition fuser handles the logic to combine the different conditions
to the actual model input.
Args:
fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
each condition. For example:
{
"prepend": ["description"],
"sum": ["genre", "bpm"],
"cross": ["description"],
}
cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention.
cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used.
"""
FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"]
def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False,
cross_attention_pos_emb_scale: float = 1.0):
super().__init__()
assert all(
[k in self.FUSING_METHODS for k in fuse2cond.keys()]
), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
self.cross_attention_pos_emb = cross_attention_pos_emb
self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale
self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
self.cond2fuse: tp.Dict[str, str] = {}
for fuse_method, conditions in fuse2cond.items():
for condition in conditions:
self.cond2fuse[condition] = fuse_method
def forward(
self,
input: torch.Tensor,
conditions: tp.Dict[str, ConditionType]
) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
"""Fuse the conditions to the provided model input.
Args:
input (torch.Tensor): Transformer input.
conditions (dict[str, ConditionType]): Dict of conditions.
Returns:
tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
after the conditions have been fused. The second output tensor is the tensor
used for cross-attention or None if no cross attention inputs exist.
"""
B, T, _ = input.shape
if 'offsets' in self._streaming_state:
first_step = False
offsets = self._streaming_state['offsets']
else:
first_step = True
offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device)
assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
f"given conditions contain unknown attributes for fuser, " \
f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
cross_attention_output = None
for cond_type, (cond, cond_mask) in conditions.items():
op = self.cond2fuse[cond_type]
if op == 'sum':
input += cond
elif op == 'input_interpolate':
cond = einops.rearrange(cond, "b t d -> b d t")
cond = F.interpolate(cond, size=input.shape[1])
input += einops.rearrange(cond, "b d t -> b t d")
elif op == 'prepend':
if first_step:
input = torch.cat([cond, input], dim=1)
elif op == 'cross':
if cross_attention_output is not None:
cross_attention_output = torch.cat([cross_attention_output, cond], dim=1)
else:
cross_attention_output = cond
else:
raise ValueError(f"unknown op ({op})")
if self.cross_attention_pos_emb and cross_attention_output is not None:
positions = torch.arange(
cross_attention_output.shape[1],
device=cross_attention_output.device
).view(1, -1, 1)
pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1])
cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb
if self._is_streaming:
self._streaming_state['offsets'] = offsets + T
return input, cross_attention_output
|