Spaces:
Runtime error
Runtime error
File size: 7,610 Bytes
930e8c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os, xml.etree.ElementTree as ET, torch, torch.nn as nn, torch.nn.functional as F, numpy as np, logging, requests
from collections import defaultdict
from torch.utils.data import DataLoader, Dataset, TensorDataset
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
from accelerate import Accelerator
from tqdm import tqdm
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configuration class
class Config:
E, H, N, C, B = 512, 32, 1024, 256, 128
M, S, V = 20000, 2048, 1e5
W, L, D = 4000, 2e-4, .15
# Custom Dataset
class MyDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index], self.labels[index]
# Custom Model
class MyModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MyModel, self).__init__()
self.hidden = nn.Linear(input_size, hidden_size)
self.output = nn.Linear(hidden_size, output_size)
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.hidden(x))
h0 = torch.zeros(1, x.size(0), hidden_size)
c0 = torch.zeros(1, x.size(0), hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# Memory Network
class MemoryNetwork:
def __init__(self, memory_size, embedding_size):
self.memory_size = memory_size
self.embedding_size = embedding_size
self.memory = np.zeros((memory_size, embedding_size))
self.usage = np.zeros(memory_size)
def store(self, data):
index = np.argmin(self.usage)
self.memory[index] = data
self.usage[index] = 1.0
def retrieve(self, query):
similarities = np.dot(self.memory, query)
index = np.argmax(similarities)
self.usage[index] += 1.0
return self.memory[index]
def update_usage(self):
self.usage *= 0.99
# Dynamic Model
class DM(nn.Module):
def __init__(self, s):
super(DM, self).__init__()
self.s = nn.ModuleDict()
for sn, l in s.items():
self.s[sn] = nn.ModuleList([self.cl(lp) for lp in l])
def cl(self, lp):
l = [nn.Linear(lp['input_size'], lp['output_size'])]
if lp.get('batch_norm', True): l.append(nn.BatchNorm1d(lp['output_size']))
a = lp.get('activation', 'relu')
if a == 'relu': l.append(nn.ReLU(inplace=True))
elif a == 'tanh': l.append(nn.Tanh())
elif a == 'sigmoid': l.append(nn.Sigmoid())
elif a == 'leaky_relu': l.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
elif a == 'elu': l.append(nn.ELU(alpha=1.0, inplace=True))
if dr := lp.get('dropout', 0.0): l.append(nn.Dropout(p=dr))
return nn.Sequential(*l)
def forward(self, x, sn=None):
if sn is not None:
for l in self.s[sn]: x = l(x)
else:
for sn, l in self.s.items():
for l in l: x = l(x)
return x
# Parsing XML
def parse_xml(file_path):
t = ET.parse(file_path)
r = t.getroot()
l = []
for ly in r.findall('.//layer'):
lp = {'input_size': int(ly.get('input_size', 128)), 'output_size': int(ly.get('output_size', 256)), 'activation': ly.get('activation', 'relu').lower()}
l.append(lp)
return l
# Create Model from Folder
def create_model_from_folder(folder_path):
s = defaultdict(list)
for r, d, f in os.walk(folder_path):
for file in f:
if file.endswith('.xml'):
fp = os.path.join(r, file)
l = parse_xml(fp)
sn = os.path.basename(r).replace('.', '_')
s[sn].extend(l)
return DM(dict(s))
# Create Embeddings and Sentences
def create_embeddings_and_sentences(folder_path, model_name="sentence-transformers/all-MiniLM-L6-v2"):
t = AutoTokenizer.from_pretrained(model_name)
m = AutoModel.from_pretrained(model_name)
embeddings, ds = [], []
for r, d, f in os.walk(folder_path):
for file in f:
if file.endswith('.xml'):
fp = os.path.join(r, file)
tree = ET.parse(fp)
root = tree.getroot()
for e in root.iter():
if e.text:
text = e.text.strip()
i = t(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
emb = m(**i).last_hidden_state.mean(dim=1).numpy()
embeddings.append(emb)
ds.append(text)
embeddings = np.vstack(embeddings)
return embeddings, ds
# Query Vector Similarity
def query_vector_similarity(query, embeddings, ds, model_name="sentence-transformers/all-MiniLM-L6-v2"):
t = AutoTokenizer.from_pretrained(model_name)
m = AutoModel.from_pretrained(model_name)
i = t(query, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
qe = m(**i).last_hidden_state.mean(dim=1).numpy()
similarities = cosine_similarity(qe, embeddings)
top_k_indices = similarities[0].argsort()[-5:][::-1]
return [ds[i] for i in top_k_indices]
# Fetch CourtListener Data
def fetch_courtlistener_data(query):
base_url = "https://nzlii.org/cgi-bin/sinosrch.cgi"
params = {"method": "auto", "query": query, "meta": "/nz", "results": "50", "format": "json"}
try:
response = requests.get(base_url, params=params, headers={"Accept": "application/json"}, timeout=10)
response.raise_for_status()
results = response.json().get("results", [])
return [{"title": r.get("title", ""), "citation": r.get("citation", ""), "date": r.get("date", ""), "court": r.get("court", ""), "summary": r.get("summary", ""), "url": r.get("url", "")} for r in results]
except requests.exceptions.RequestException as e:
logging.error(f"Failed to fetch data from NZLII API: {str(e)}")
return []
# Main function
def main():
folder_path = 'data'
model = create_model_from_folder(folder_path)
logging.info(f"Created dynamic PyTorch model with sections: {list(model.s.keys())}")
embeddings, ds = create_embeddings_and_sentences(folder_path)
accelerator = Accelerator()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
num_epochs = 10
dataset = MyDataset(torch.randn(1000, 10), torch.randint(0, 5, (1000,)))
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for epoch in range(num_epochs):
model.train()
for batch_data, batch_labels in dataloader:
optimizer.zero_grad()
outputs = model(batch_data)
loss = criterion(outputs, batch_labels)
accelerator.backward(loss)
optimizer.step()
logging.info(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
query = "example query text"
results = query_vector_similarity(query, embeddings, ds)
logging.info(f"Query results: {results}")
courtlistener_data = fetch_courtlistener_data(query)
logging.info(f"CourtListener API results: {courtlistener_data}")
if __name__ == "__main__":
main() |