ai-dungeon / README.md
prgrmc's picture
add final words to readme
073b612

A newer version of the Gradio SDK is available: 5.12.0

Upgrade
metadata
title: AI Dungeon Game
emoji: ๐ŸŽฎ
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.9.1
app_file: main.py
pinned: false

AI-Powered Dungeon Adventure Game

Table of Contents

Overview

An advanced text-based adventure game powered by Large Language Models (LLMs) that demonstrates the practical application of AI/ML in interactive entertainment. The game features dynamic quest generation, intelligent NPC interactions, and content safety validation using state-of-the-art language models.

Technical Architecture

  • Core Engine: Python-based game engine with modular architecture
  • AI Integration: Hugging Face Transformers pipeline for text generation
  • UI Framework: Gradio for interactive web interface
  • Safety Layer: LLaMA Guard for content moderation
  • State Management: Dynamic game state handling with quest progression
  • Memory Management: Optimized for GPU utilization with 8-bit quantization

Key Features

  1. Dynamic Quest System

    • Procedurally generated quests based on player progress
    • Multi-chain quest progression
    • Experience-based leveling system
  2. Intelligent Response Generation

    • Context-aware narrative responses
    • Dynamic world state adaptation
    • Natural language understanding (NLP)
  3. Advanced Safety System

    • Real-time content moderation
    • Multi-category safety checks
    • Cached response validation
  4. Inventory Management

    • Dynamic item tracking
    • Automated inventory updates
    • Natural language parsing for item detection

Game Mechanics

  • Dungeon Generation: Randomly generated dungeons with obstacles.
  • Player and NPCs: Players can move, fight NPCs, and use items.
  • Combat System: Turn-based combat with simple AI decision-making.
  • Inventory Management: Collect and use items to aid in your adventure.
  • Quest System: Complete quests to earn rewards and progress through the game.

AI/ML Implementation

  1. Language Models

    • Primary: LLaMA-3.2-3B-Instruct
    • Safety: LLaMA-Guard-3-1B
    • Optimized with 8-bit quantization
  2. Natural Language Processing

    • Context embedding
    • Response generation
    • Content safety validation
  3. Memory Optimization

    • GPU memory management
    • Response caching
    • Efficient token handling

Installation

# Clone repository
git clone https://github.com/prgrmcode/ai-dungeon-game.git
cd ai-dungeon-game

# Create virtual environment
python -m venv dungeon-env
source dungeon-env/Scripts/activate  # Windows
source dungeon-env/bin/activate      # Linux/Mac

# Install dependencies (`pip freeze > requirements.txt` to get requirements)
pip install -r requirements.txt
# Or install libraries directly:
pip install numpy matplotlib pygame
pip install python-dotenv
pip install transformers
pip install gradio
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu118
pip install psutil
pip install 'accelerate>=0.26.0

# Create a .env file in the root directory of the project and add your environment variables:
HUGGINGFACE_API_KEY=your_api_key_here

Usage

# Run the game locally using gpu-compute branch
git checkout gpu-compute
python main.py

# Start the game using deployed main branch
git checkout main
python main.py

# Access via web browser
http://localhost:7860
# or:
http://127.0.0.1:7860

Project Structure

ai_dungeon_game/
โ”œโ”€โ”€ assets/
โ”‚   โ””โ”€โ”€ ascii_art.py
โ”œโ”€โ”€ game/
โ”‚   โ”œโ”€โ”€ combat.py
โ”‚   โ”œโ”€โ”€ dungeon.py
โ”‚   โ”œโ”€โ”€ items.py
โ”‚   โ”œโ”€โ”€ npc.py
โ”‚   โ””โ”€โ”€ player.py
โ”œโ”€โ”€ shared_data/
โ”‚   โ””โ”€โ”€ Ethoria.json
โ”œโ”€โ”€ helper.py
โ””โ”€โ”€ main.py

Technologies Used

  • Python 3.10+
  • PyTorch: Deep learning framework
  • Transformers: Hugging Face's transformer models
  • Gradio: Web interface framework
  • CUDA: GPU acceleration
  • JSON: Data storage
  • Logging: Advanced error tracking

Skills Demonstrated

  1. AI/ML Engineering

    • Large Language Model implementation
    • Model optimization
    • Prompt engineering
    • Content safety systems
  2. Software Engineering

    • Clean architecture
    • Object-oriented design
    • Error handling
    • Memory optimization
  3. Data Science

    • Natural language processing
    • State management
    • Data validation
    • Pattern recognition
  4. System Design

    • Modular architecture
    • Scalable systems
    • Memory management
    • Performance optimization

Future Enhancements

  1. Advanced AI Features

    • Multi-modal content generation
    • Improved context understanding
    • Dynamic difficulty adjustment
  2. Technical Improvements

    • Distributed computing support
    • Advanced caching mechanisms
    • Real-time model updating
  3. Gameplay Features

    • Choose character at the beginning
    • Multiplayer support
    • Advanced combat system
    • Dynamic world generation
  4. Visual Enhancements

    • Graphical User Interface (GUI): Implement a GUI using Pygame to provide a more interactive and visually appealing experience.

    • 2D/3D Graphics: Use libraries like Pygame or Pyglet for 2D graphics.

    • Animations: Add animations for player and NPC movements, combat actions, and other in-game events.

    • Visual Effects: Implement visual effects such as particle systems for magic spells, explosions, and other dynamic events.

    • Map Visualization: Create a visual representation of the dungeon map that updates as the player explores.

Requirements

  • Python 3.10+
  • CUDA-capable GPU (recommended)
  • 8GB+ RAM
  • Hugging Face API key

Deployment Options

Local Docker Deployment

# Build and run with Docker
docker-compose --env-file .env up --build

Hugging Face Spaces Deployment

  1. Fork repository
  2. Connect to Hugging Face Spaces
  3. Deploy through GitHub Actions

AWS Deployment

  1. Push to ECR:
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com
docker build -t ai-dungeon .
docker tag ai-dungeon:latest $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/ai-dungeon:latest
docker push $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/ai-dungeon:latest
  1. Deploy to ECS/EKS

Kubernetes Deployment

kubectl apply -f kubernetes/

Final Words

Thank you for exploring the AI Dungeon Game! This project showcases:

  • Practical AI/ML implementation in interactive gaming
  • Clean, maintainable code following best practices
  • Robust security with input validation and safety checks
  • Performance optimization and scalable architecture

The codebase demonstrates strong software engineering principles while creating an engaging gaming experience. Your feedback and contributions are invaluable in making this game even better.

Happy adventuring in the world of AI-powered dungeons! ๐ŸŽฎ