Spaces:
Sleeping
Sleeping
File size: 5,726 Bytes
a4e40bd df221cb a4e40bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# file: app.py
import gradio as gr
import requests
import json
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from langchain_community.document_loaders import PyPDFLoader
from langdetect import detect_langs
from PyPDF2 import PdfReader
from io import BytesIO
import logging
from dotenv import load_dotenv
import os
load_dotenv()
data = False
seen = set()
main_url = "https://similar-products-api.vercel.app/search/all"
main_product = "Samsung Galaxy"
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"}
logging.basicConfig(level=logging.INFO)
def get_links(product):
params = {
"API_KEY": "12345",
"product": f"{product}",
}
response = requests.get(main_url, params=params)
if response.status_code == 200:
results = response.json()
return results
else:
return {}
def language_preprocess(text):
try:
if detect_langs(text)[0].lang == 'en':
return True
return False
except Exception as e:
logging.error(f"Language detection error: {e}")
return False
def relevant(product, similar_product, content):
try:
payload = {"inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content[:700]}'''}
response = requests.post(API_URL, headers=headers, json=payload)
output = response.json()
return bool(output[0]['generated_text'])
except Exception as e:
logging.error(f"Relevance checking error: {e}")
return False
def download_pdf(url, timeout=10):
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
return BytesIO(response.content)
except requests.RequestException as e:
logging.error(f"PDF download error: {e}")
return None
def extract_text_from_pages(pdf_file, pages):
reader = PdfReader(pdf_file)
extracted_text = ""
try:
for page_num in pages:
if page_num < len(reader.pages):
page = reader.pages[page_num]
extracted_text += page.extract_text() + "\n"
else:
logging.warning(f"Page {page_num} does not exist in the document.")
return extracted_text
except Exception as e:
logging.error(f"PDF text extraction error: {e}")
return 'हे चालत नाही'
def process_link(link, similar_product):
if link in seen:
return None
seen.add(link)
try:
pdf_file = download_pdf(link)
if pdf_file:
text = extract_text_from_pages(pdf_file, [0, 2, 4])
if language_preprocess(text):
if relevant(main_product, similar_product, text):
return link
except Exception as e:
logging.error(f"Error processing link: {e}")
return None
def filtering(urls, similar_product):
res = []
with ThreadPoolExecutor() as executor:
futures = {executor.submit(process_link, link, similar_product): link for link in urls}
for future in concurrent.futures.as_completed(futures):
result = future.result()
if result is not None:
res.append(result)
return res
def wikipedia_url(product):
api_url = "https://en.wikipedia.org/w/api.php"
params = {
"action": "opensearch",
"search": product,
"limit": 5,
"namespace": 0,
"format": "json"
}
try:
response = requests.get(api_url, params=params)
response.raise_for_status()
data = response.json()
if data and len(data) > 3 and len(data[3]) > 0:
return data[3]
else:
return []
except requests.RequestException as e:
logging.error(f"Error fetching Wikipedia URLs: {e}")
return []
def preprocess_initial(product):
return get_links(product)
def preprocess_filter(product, data):
for similar_product in data:
if similar_product != product:
if list(data[similar_product][0])[0] == 'duckduckgo':
s = set(('duckduckgo', 'google', 'archive'))
temp = []
for idx, item in enumerate(data[similar_product]):
if list(item)[0] in s:
urls = data[similar_product][idx][list(item)[0]]
temp += filtering(urls, similar_product)
else:
temp += data[similar_product][idx][list(item)[0]]
data[similar_product] = temp
data[similar_product] += wikipedia_url(similar_product)
else:
urls = data[similar_product]
data[similar_product] = filtering(urls, similar_product)
data[similar_product] += wikipedia_url(similar_product)
logging.info('Filtering completed')
return data
def main(product_name):
return preprocess_initial(product_name)
def filter_links(product_name, initial_data):
return preprocess_filter(product_name, initial_data)
with gr.Blocks() as demo:
product_name = gr.Textbox(label="Product Name")
get_links_btn = gr.Button("Get Links")
initial_links_output = gr.JSON()
filter_btn = gr.Button("Filter Links")
filtered_links_output = gr.JSON()
get_links_btn.click(fn=main, inputs=product_name, outputs=initial_links_output)
filter_btn.click(fn=filter_links, inputs=[product_name, initial_links_output], outputs=filtered_links_output)
if __name__ == "__main__":
demo.launch()
|