Spaces:
Runtime error
Runtime error
File size: 13,024 Bytes
2bce936 296f87c 2bce936 296f87c 2bce936 296f87c 2bce936 296f87c 2bce936 296f87c eb7c94b 296f87c 2bce936 296f87c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import torch
import numpy as np
from sentence_transformers import SentenceTransformer
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import random
import logging
import json
import os
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class Chatbot:
def __init__(self):
self.device = 'cpu' # Force CPU usage for Hugging Face Spaces
logger.info("π Initializing Fashion Chatbot with CPU...")
self.model = None
self.product_data = {}
self.images = {}
self.product_embeddings = None
self.load_models()
self.setup_sample_data()
def load_models(self):
"""Load all required models with CPU-only configuration"""
try:
logger.info("π₯ Loading SentenceTransformer model on CPU...")
# Force CPU for all operations
torch.device('cpu')
# Load a lightweight model suitable for CPU
self.model = SentenceTransformer(
'all-MiniLM-L6-v2', # Lightweight model for CPU
device='cpu'
)
logger.info("β
Model loaded successfully on CPU")
except Exception as e:
logger.error(f"β Error loading model: {e}")
# Create a dummy model for fallback
self.model = None
def setup_sample_data(self):
"""Setup sample fashion product data for demonstration"""
logger.info("ποΈ Setting up sample fashion data...")
# Sample fashion products data
self.product_data = {
0: {
'productDisplayName': 'Classic White T-Shirt',
'masterCategory': 'Apparel',
'articleType': 'T-Shirt',
'usage': 'Casual',
'season': 'All Season',
'gender': 'Unisex',
'baseColour': 'White',
'price': 29.99
},
1: {
'productDisplayName': 'Denim Jacket',
'masterCategory': 'Apparel',
'articleType': 'Jacket',
'usage': 'Casual',
'season': 'Spring, Fall',
'gender': 'Unisex',
'baseColour': 'Blue',
'price': 89.99
},
2: {
'productDisplayName': 'Black Leather Boots',
'masterCategory': 'Footwear',
'articleType': 'Boots',
'usage': 'Casual',
'season': 'Winter, Fall',
'gender': 'Unisex',
'baseColour': 'Black',
'price': 129.99
},
3: {
'productDisplayName': 'Summer Floral Dress',
'masterCategory': 'Apparel',
'articleType': 'Dress',
'usage': 'Casual',
'season': 'Summer',
'gender': 'Women',
'baseColour': 'Multicolor',
'price': 59.99
},
4: {
'productDisplayName': 'Sports Running Shoes',
'masterCategory': 'Footwear',
'articleType': 'Sports Shoes',
'usage': 'Sports',
'season': 'All Season',
'gender': 'Unisex',
'baseColour': 'White',
'price': 79.99
},
5: {
'productDisplayName': 'Wool Winter Scarf',
'masterCategory': 'Accessories',
'articleType': 'Scarf',
'usage': 'Casual',
'season': 'Winter',
'gender': 'Unisex',
'baseColour': 'Grey',
'price': 34.99
}
}
# Generate sample product images
self.images = {}
for pid in self.product_data.keys():
self.images[pid] = self.generate_sample_image(pid)
# Create sample embeddings for products
self.create_sample_embeddings()
logger.info(f"β
Loaded {len(self.product_data)} sample products")
def generate_sample_image(self, product_id):
"""Generate a sample product image for demonstration"""
# Create a simple colored image with text
img = Image.new('RGB', (200, 200), color=self.get_color_for_product(product_id))
draw = ImageDraw.Draw(img)
# Add product type text
product_type = self.product_data[product_id]['articleType']
draw.text((50, 90), product_type, fill='white')
return img
def get_color_for_product(self, product_id):
"""Get color based on product"""
color_map = {
'White': (255, 255, 255),
'Blue': (0, 0, 255),
'Black': (0, 0, 0),
'Multicolor': (255, 0, 0),
'Grey': (128, 128, 128)
}
base_color = self.product_data[product_id]['baseColour']
return color_map.get(base_color, (200, 200, 200))
def create_sample_embeddings(self):
"""Create sample embeddings for products"""
try:
if self.model is not None:
product_descriptions = []
for pid, data in self.product_data.items():
desc = f"{data['productDisplayName']} {data['articleType']} {data['usage']} {data['season']} {data['gender']}"
product_descriptions.append(desc)
self.product_embeddings = self.model.encode(product_descriptions)
else:
# Create dummy embeddings
self.product_embeddings = np.random.randn(len(self.product_data), 384)
except Exception as e:
logger.error(f"Error creating embeddings: {e}")
self.product_embeddings = np.random.randn(len(self.product_data), 384)
def load_data(self):
"""Load product data - using sample data for demo"""
logger.info("π Loading product data...")
# Data is already loaded in setup_sample_data
pass
def generate_image_caption(self, image_path):
"""Generate caption for uploaded image"""
try:
# For CPU deployment, use a simpler approach
image = Image.open(image_path)
# Simple analysis based on image characteristics
width, height = image.size
dominant_color = self.get_dominant_color(image)
# Generate descriptive caption based on image properties
size_desc = "large" if width > 1000 else "medium" if width > 500 else "small"
color_desc = self.get_color_name(dominant_color)
captions = [
f"A {size_desc} {color_desc} fashion item perfect for your style",
f"Stylish {color_desc} clothing item that matches current trends",
f"Fashionable {size_desc} apparel in {color_desc} color",
f"Trendy {color_desc} fashion piece suitable for various occasions"
]
return random.choice(captions)
except Exception as e:
logger.error(f"Error generating caption: {e}")
return "A fashionable clothing item that suits your style"
def get_dominant_color(self, image):
"""Get dominant color from image (simplified)"""
try:
# Resize image for faster processing
image = image.resize((50, 50))
# Convert to numpy array and get average color
np_image = np.array(image)
return tuple(np.mean(np_image, axis=(0, 1)).astype(int))
except:
return (128, 128, 128) # Default gray
def get_color_name(self, rgb):
"""Convert RGB to color name"""
colors = {
(255, 255, 255): "white",
(0, 0, 0): "black",
(255, 0, 0): "red",
(0, 255, 0): "green",
(0, 0, 255): "blue",
(255, 255, 0): "yellow",
(128, 128, 128): "gray",
(255, 165, 0): "orange",
(128, 0, 128): "purple"
}
# Find closest color
min_dist = float('inf')
closest_color = "colored"
for color, name in colors.items():
dist = sum((a - b) ** 2 for a, b in zip(rgb, color))
if dist < min_dist:
min_dist = dist
closest_color = name
return closest_color
def generate_response(self, query):
"""Generate chatbot response and recommendations"""
try:
# Fashion-related responses
fashion_responses = {
'casual': "Great choice! Casual wear is perfect for everyday comfort and style.",
'formal': "Elegant choice! Formal wear always makes a strong impression.",
'sports': "Active lifestyle! Sports wear combines comfort and performance.",
'summer': "Perfect for warm weather! Light and breathable fabrics work best.",
'winter': "Stay warm and stylish! Layering is key for winter fashion.",
'dress': "Dresses are versatile and always in style!",
'shirt': "Classic shirts never go out of fashion!",
'shoes': "The right shoes can complete any outfit!",
'jacket': "Jackets add style and functionality to any outfit!"
}
# Generate contextual response
query_lower = query.lower()
response_key = None
for key in fashion_responses.keys():
if key in query_lower:
response_key = key
break
if response_key:
bot_response = fashion_responses[response_key]
else:
generic_responses = [
f"I found some great fashion items related to '{query}'!",
f"Based on your interest in '{query}', here are my recommendations:",
f"Here are some stylish options for '{query}':",
f"Perfect! I have some fashion suggestions for '{query}':"
]
bot_response = random.choice(generic_responses)
# Get recommendations
recommended_products = self.get_recommendations(query)
return bot_response, recommended_products
except Exception as e:
logger.error(f"Error generating response: {e}")
return "I apologize, but I'm having trouble processing your request right now.", []
def get_recommendations(self, query, top_k=3):
"""Get product recommendations based on query"""
try:
if self.model is not None and self.product_embeddings is not None:
# Encode query
query_embedding = self.model.encode([query])
# Calculate similarities (using dot product for simplicity)
similarities = np.dot(self.product_embeddings, query_embedding.T).flatten()
# Get top products
top_indices = np.argsort(similarities)[::-1][:top_k]
else:
# Fallback: random recommendations
top_indices = random.sample(list(self.product_data.keys()), min(top_k, len(self.product_data)))
recommended_products = []
for idx in top_indices:
recommended_products.append({
'corpus_id': idx,
'score': 0.9 - (len(recommended_products) * 0.1)
})
return recommended_products
except Exception as e:
logger.error(f"Error getting recommendations: {e}")
# Return random products as fallback
return [{'corpus_id': i, 'score': 0.8} for i in range(min(3, len(self.product_data)))]
def get_product_info(self, product_id):
"""Get complete product information"""
try:
if product_id in self.product_data:
data = self.product_data[product_id]
return {
'name': data['productDisplayName'],
'category': data['masterCategory'],
'article_type': data['articleType'],
'usage': data['usage'],
'season': data['season'],
'gender': data['gender'],
'color': data['baseColour'],
'price': data['price'],
'image': self.images.get(product_id)
}
return None
except Exception as e:
logger.error(f"Error getting product info: {e}")
return None |