File size: 18,666 Bytes
de71102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Live Object Detection</title>
<script src="https://cdn.tailwindcss.com"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/coco-ssd"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
<style>
.detection-box {
position: absolute;
border: 3px solid;
border-radius: 4px;
font-weight: bold;
text-shadow: 1px 1px 1px rgba(0,0,0,0.8);
padding: 2px 4px;
white-space: nowrap;
}
.video-container {
position: relative;
overflow: hidden;
border-radius: 12px;
box-shadow: 0 10px 25px rgba(0,0,0,0.2);
}
.detection-canvas {
position: absolute;
top: 0;
left: 0;
pointer-events: none;
}
.stats-card {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.1);
}
.detection-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(120px, 1fr));
gap: 8px;
}
.detection-item {
transition: all 0.3s ease;
}
.detection-item:hover {
transform: translateY(-3px);
}
.pulse {
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { box-shadow: 0 0 0 0 rgba(59, 130, 246, 0.7); }
70% { box-shadow: 0 0 0 10px rgba(59, 130, 246, 0); }
100% { box-shadow: 0 0 0 0 rgba(59, 130, 246, 0); }
}
</style>
</head>
<body class="bg-gradient-to-br from-gray-900 to-gray-800 min-h-screen text-white">
<div class="container mx-auto px-4 py-8">
<header class="text-center mb-12">
<h1 class="text-4xl md:text-5xl font-bold mb-4 bg-clip-text text-transparent bg-gradient-to-r from-blue-400 to-purple-500">
Live Object Detection
</h1>
<p class="text-gray-300 max-w-2xl mx-auto">
Real-time object detection using your device's camera powered by TensorFlow.js and COCO-SSD model.
Grant camera access to start detecting objects in your environment.
</p>
</header>
<main>
<div class="flex flex-col lg:flex-row gap-8">
<!-- Camera Feed Section -->
<div class="lg:w-2/3">
<div class="video-container relative">
<video id="video" autoplay playsinline class="w-full h-auto rounded-lg bg-gray-800 aspect-video"></video>
<canvas id="canvas" class="detection-canvas w-full h-auto rounded-lg"></canvas>
<!-- Camera Access Prompt -->
<div id="cameraPrompt" class="absolute inset-0 flex flex-col items-center justify-center bg-gray-900 bg-opacity-80 rounded-lg">
<div class="text-center p-8">
<i class="fas fa-camera text-6xl text-blue-400 mb-4"></i>
<h2 class="text-2xl font-bold mb-2">Camera Access Required</h2>
<p class="text-gray-300 mb-6">Please allow camera access to enable live object detection</p>
<button id="startBtn" class="bg-blue-500 hover:bg-blue-600 text-white font-bold py-3 px-8 rounded-full text-lg transition-all transform hover:scale-105 pulse">
Start Detection
</button>
</div>
</div>
</div>
<!-- Controls -->
<div class="mt-6 flex flex-wrap gap-4 justify-center">
<button id="toggleDetectionBtn" class="bg-blue-600 hover:bg-blue-700 text-white font-medium py-2 px-6 rounded-lg flex items-center disabled:opacity-50">
<i class="fas fa-play mr-2"></i> Start Detection
</button>
<button id="toggleCameraBtn" class="bg-gray-700 hover:bg-gray-600 text-white font-medium py-2 px-6 rounded-lg flex items-center">
<i class="fas fa-sync mr-2"></i> Switch Camera
</button>
<button id="captureBtn" class="bg-purple-600 hover:bg-purple-700 text-white font-medium py-2 px-6 rounded-lg flex items-center">
<i class="fas fa-camera mr-2"></i> Capture Frame
</button>
</div>
</div>
<!-- Detection Results -->
<div class="lg:w-1/3">
<div class="bg-gray-800 bg-opacity-50 rounded-xl p-6 h-full">
<h2 class="text-2xl font-bold mb-4 flex items-center">
<i class="fas fa-list mr-3 text-blue-400"></i> Detection Results
</h2>
<div class="stats-card rounded-lg p-4 mb-6">
<div class="grid grid-cols-3 gap-4 text-center">
<div>
<div class="text-sm text-gray-300">Objects</div>
<div id="objectCount" class="text-2xl font-bold">0</div>
</div>
<div>
<div class="text-sm text-gray-300">FPS</div>
<div id="fpsCounter" class="text-2xl font-bold">0</div>
</div>
<div>
<div class="text-sm text-gray-300">Confidence</div>
<div id="avgConfidence" class="text-2xl font-bold">0%</div>
</div>
</div>
</div>
<h3 class="text-lg font-semibold mb-3 flex items-center">
<i class="fas fa-boxes mr-2 text-blue-400"></i> Detected Objects
</h3>
<div id="detectionList" class="detection-grid">
<!-- Detected items will appear here -->
<div class="text-center py-4 text-gray-400">
No objects detected yet
</div>
</div>
</div>
</div>
</div>
</main>
<footer class="mt-16 text-center text-gray-400">
<p>Powered by TensorFlow.js and COCO-SSD model | Built with Tailwind CSS</p>
<p class="mt-2">Note: Processing happens entirely in your browser - no data is sent to any server</p>
</footer>
</div>
<script>
// DOM Elements
const video = document.getElementById('video');
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
const cameraPrompt = document.getElementById('cameraPrompt');
const startBtn = document.getElementById('startBtn');
const toggleDetectionBtn = document.getElementById('toggleDetectionBtn');
const toggleCameraBtn = document.getElementById('toggleCameraBtn');
const captureBtn = document.getElementById('captureBtn');
const objectCount = document.getElementById('objectCount');
const fpsCounter = document.getElementById('fpsCounter');
const avgConfidence = document.getElementById('avgConfidence');
const detectionList = document.getElementById('detectionList');
// App State
let model = null;
let detectionActive = false;
let stream = null;
let currentFacingMode = 'environment'; // 'user' for front, 'environment' for back
let lastTimestamp = 0;
let frameCount = 0;
let fps = 0;
let detectedObjects = [];
// Color palette for detection boxes
const colors = [
'#FF5252', '#FF4081', '#E040FB', '#7C4DFF',
'#536DFE', '#448AFF', '#40C4FF', '#18FFFF',
'#64FFDA', '#69F0AE', '#B2FF59', '#EEFF41'
];
// Initialize the app
async function init() {
try {
// Load the model
model = await cocoSsd.load();
console.log('Model loaded successfully');
// Set up event listeners
startBtn.addEventListener('click', startCamera);
toggleDetectionBtn.addEventListener('click', toggleDetection);
toggleCameraBtn.addEventListener('click', switchCamera);
captureBtn.addEventListener('click', captureFrame);
// Disable buttons until camera is started
toggleDetectionBtn.disabled = true;
toggleCameraBtn.disabled = true;
captureBtn.disabled = true;
} catch (error) {
console.error('Error loading model:', error);
alert('Failed to load the object detection model. Please try again later.');
}
}
// Start the camera
async function startCamera() {
try {
stream = await navigator.mediaDevices.getUserMedia({
video: { facingMode: currentFacingMode }
});
video.srcObject = stream;
cameraPrompt.classList.add('hidden');
toggleDetectionBtn.disabled = false;
toggleCameraBtn.disabled = false;
captureBtn.disabled = false;
// Wait for video to load metadata
video.addEventListener('loadedmetadata', () => {
// Set canvas dimensions to match video
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
// Start detection if button was clicked to start
if (detectionActive) {
detectFrame();
}
});
} catch (error) {
console.error('Error accessing camera:', error);
cameraPrompt.querySelector('p').textContent = 'Camera access denied. Please allow camera permissions and refresh the page.';
}
}
// Switch between front and back camera
async function switchCamera() {
if (!stream) return;
// Stop current stream
stream.getTracks().forEach(track => track.stop());
// Toggle facing mode
currentFacingMode = currentFacingMode === 'environment' ? 'user' : 'environment';
// Restart camera
await startCamera();
}
// Toggle detection on/off
function toggleDetection() {
detectionActive = !detectionActive;
if (detectionActive) {
toggleDetectionBtn.innerHTML = '<i class="fas fa-pause mr-2"></i> Pause Detection';
detectFrame();
} else {
toggleDetectionBtn.innerHTML = '<i class="fas fa-play mr-2"></i> Resume Detection';
}
}
// Capture current frame
function captureFrame() {
if (!detectionActive) return;
// Create a temporary canvas to draw the current frame
const tempCanvas = document.createElement('canvas');
tempCanvas.width = canvas.width;
tempCanvas.height = canvas.height;
const tempCtx = tempCanvas.getContext('2d');
// Draw video frame
tempCtx.drawImage(video, 0, 0, tempCanvas.width, tempCanvas.height);
// Draw detections
tempCtx.drawImage(canvas, 0, 0);
// Create download link
const link = document.createElement('a');
link.download = 'object-detection-' + new Date().toISOString().replace(/:/g, '-') + '.png';
link.href = tempCanvas.toDataURL('image/png');
link.click();
// Show notification
showNotification('Frame captured successfully!');
}
// Show notification
function showNotification(message) {
const notification = document.createElement('div');
notification.className = 'fixed bottom-4 right-4 bg-green-600 text-white px-4 py-2 rounded-lg shadow-lg z-50 animate-fadeIn';
notification.textContent = message;
document.body.appendChild(notification);
setTimeout(() => {
notification.classList.add('animate-fadeOut');
setTimeout(() => {
document.body.removeChild(notification);
}, 500);
}, 3000);
}
// Main detection function
async function detectFrame() {
if (!detectionActive || !model) return;
// Start timing for FPS calculation
const startTime = performance.now();
try {
// Detect objects in the frame
const predictions = await model.detect(video);
// Clear previous detections
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Process predictions
detectedObjects = [];
let totalConfidence = 0;
predictions.forEach((prediction, index) => {
// Extract prediction data
const [x, y, width, height] = prediction.bbox;
const label = prediction.class;
const score = Math.round(prediction.score * 100);
// Add to detected objects
detectedObjects.push({
label,
score,
color: colors[index % colors.length]
});
// Draw bounding box
ctx.strokeStyle = colors[index % colors.length];
ctx.lineWidth = 3;
ctx.strokeRect(x, y, width, height);
// Draw label background
ctx.fillStyle = colors[index % colors.length];
const textWidth = ctx.measureText(`${label} ${score}%`).width;
ctx.fillRect(x, y, textWidth + 10, 25);
// Draw label text
ctx.fillStyle = 'white';
ctx.font = 'bold 16px Arial';
ctx.fillText(`${label} ${score}%`, x + 5, y + 18);
// Add to total confidence for average
totalConfidence += score;
});
// Update stats
objectCount.textContent = predictions.length;
const avgConf = predictions.length > 0 ? Math.round(totalConfidence / predictions.length) : 0;
avgConfidence.textContent = `${avgConf}%`;
// Update detection list
updateDetectionList();
// Calculate FPS
frameCount++;
const elapsed = startTime - lastTimestamp;
if (elapsed >= 1000) {
fps = Math.round((frameCount * 1000) / elapsed);
fpsCounter.textContent = fps;
frameCount = 0;
lastTimestamp = startTime;
}
} catch (error) {
console.error('Detection error:', error);
}
// Continue detection loop
if (detectionActive) {
requestAnimationFrame(detectFrame);
}
}
// Update the detection list UI
function updateDetectionList() {
if (detectedObjects.length === 0) {
detectionList.innerHTML = '<div class="text-center py-4 text-gray-400 col-span-3">No objects detected</div>';
return;
}
// Clear previous list
detectionList.innerHTML = '';
// Create new items
detectedObjects.forEach(obj => {
const item = document.createElement('div');
item.className = 'detection-item bg-gray-700 rounded-lg p-3 flex flex-col items-center';
item.innerHTML = `
<div class="w-12 h-12 rounded-full mb-2 flex items-center justify-center" style="background-color: ${obj.color}">
<i class="fas fa-box text-white text-xl"></i>
</div>
<div class="font-semibold">${obj.label}</div>
<div class="text-sm text-gray-300">${obj.score}%</div>
`;
detectionList.appendChild(item);
});
}
// Initialize the app when the page loads
window.addEventListener('DOMContentLoaded', init);
</script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=Prathamesh1420/live-camera-object-detection" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html> |