Spaces:
Runtime error
Runtime error
File size: 9,893 Bytes
4014562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
PROJECT_PATH = 'cleaned_code'
import os
import sys
sys.path.append(PROJECT_PATH)
import numpy as np
import pickle
import h5py
from tqdm import tqdm
from transformers import AutoTokenizer
from scipy.special import expit
import torch
from typing import Optional
import json
from src import BertForSemanticEmbedding, getLabelModel
from src import DataTrainingArguments, ModelArguments, CustomTrainingArguments, read_yaml_config
from src import dataset_classification_type
from src import SemSupDataset
from transformers import AutoConfig, HfArgumentParser, AutoTokenizer
import torch
import json
from tqdm import tqdm
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def compute_tok_score_cart(doc_reps, doc_input_ids, qry_reps, qry_input_ids, qry_attention_mask):
qry_input_ids = qry_input_ids.unsqueeze(2).unsqueeze(3) # Q * LQ * 1 * 1
doc_input_ids = doc_input_ids.unsqueeze(0).unsqueeze(1) # 1 * 1 * D * LD
exact_match = doc_input_ids == qry_input_ids # Q * LQ * D * LD
exact_match = exact_match.float()
scores_no_masking = torch.matmul(
qry_reps.view(-1, 16), # (Q * LQ) * d
doc_reps.view(-1, 16).transpose(0, 1) # d * (D * LD)
)
scores_no_masking = scores_no_masking.view(
*qry_reps.shape[:2], *doc_reps.shape[:2]) # Q * LQ * D * LD
scores, _ = (scores_no_masking * exact_match).max(dim=3) # Q * LQ * D
tok_scores = (scores * qry_attention_mask.reshape(-1, qry_attention_mask.shape[-1]).unsqueeze(2))[:, 1:].sum(1)
return tok_scores
def coil_fast_eval_forward(
input_ids: Optional[torch.Tensor] = None,
doc_reps = None,
logits: Optional[torch.Tensor] = None,
desc_input_ids = None,
desc_attention_mask = None,
lab_reps = None,
label_embeddings = None
):
tok_scores = compute_tok_score_cart(
doc_reps, input_ids,
lab_reps, desc_input_ids.reshape(-1, desc_input_ids.shape[-1]), desc_attention_mask
)
logits = (logits.unsqueeze(0) @ label_embeddings.T)
new_tok_scores = torch.zeros(logits.shape, device = logits.device)
for i in range(tok_scores.shape[1]):
stride = tok_scores.shape[0]//tok_scores.shape[1]
new_tok_scores[i] = tok_scores[i*stride: i*stride + stride ,i]
return (logits + new_tok_scores).squeeze()
class DemoModel:
def __init__(self, ):
self.label_list = [x.strip() for x in open(f'{PROJECT_PATH}/datasets/Amzn13K/all_labels.txt')]
unseen_label_list = [x.strip() for x in open(f'{PROJECT_PATH}/datasets/Amzn13K/unseen_labels_split6500_2.txt')]
num_labels = len(self.label_list)
self.label_list.sort() # For consistency
l2i = {v: i for i, v in enumerate(self.label_list)}
unseen_label_indexes = [l2i[x] for x in unseen_label_list]
self.coil_cluster_map = json.load(open(f'{PROJECT_PATH}/bert_coil_map_dict_lemma255K_isotropic.json'))
all_lab_reps1, all_label_embeddings1, all_desc_input_ids_orig1, all_desc_input_ids1, all_desc_attention_mask1 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_1.pkl','rb'))
all_lab_reps2, all_label_embeddings2, all_desc_input_ids_orig2, all_desc_input_ids2, all_desc_attention_mask2 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_2.pkl','rb'))
all_lab_reps3, all_label_embeddings3, all_desc_input_ids_orig3, all_desc_input_ids3, all_desc_attention_mask3 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_3.pkl','rb'))
all_lab_reps4, all_label_embeddings4, all_desc_input_ids_orig4, all_desc_input_ids4, all_desc_attention_mask4 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_4.pkl','rb'))
all_lab_reps5, all_label_embeddings5, all_desc_input_ids_orig5, all_desc_input_ids5, all_desc_attention_mask5 = pickle.load(open(f'{PROJECT_PATH}/precomputed/Amzn13K/amzn_base_labels_data1_5.pkl','rb'))
self.all_lab_reps = [all_lab_reps1.to(device), all_lab_reps2.to(device), all_lab_reps3.to(device), all_lab_reps4.to(device), all_lab_reps5.to(device)]
self.all_label_embeddings = [all_label_embeddings1.to(device), all_label_embeddings2.to(device), all_label_embeddings3.to(device), all_label_embeddings4.to(device), all_label_embeddings5.to(device)]
self.all_desc_input_ids_orig = [all_desc_input_ids_orig1.to(device), all_desc_input_ids_orig2.to(device), all_desc_input_ids_orig3.to(device), all_desc_input_ids_orig4.to(device), all_desc_input_ids_orig5.to(device)]
self.all_desc_input_ids = [all_desc_input_ids1.to(device), all_desc_input_ids2.to(device), all_desc_input_ids3.to(device), all_desc_input_ids4.to(device), all_desc_input_ids5.to(device)]
self.all_desc_attention_mask = [all_desc_attention_mask1.to(device), all_desc_attention_mask2.to(device), all_desc_attention_mask3.to(device), all_desc_attention_mask4.to(device), all_desc_attention_mask5.to(device)]
ARGS_FILE = f'{PROJECT_PATH}/configs/ablation_amzn_eda.yml'
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))
self.model_args, self.data_args, self.training_args = parser.parse_dict(read_yaml_config(ARGS_FILE, output_dir = 'demo_tmp', extra_args = {}))
config = AutoConfig.from_pretrained(
self.model_args.config_name if self.model_args.config_name else self.model_args.model_name_or_path,
finetuning_task=self.data_args.task_name,
cache_dir=self.model_args.cache_dir,
revision=self.model_args.model_revision,
use_auth_token=True if self.model_args.use_auth_token else None,
)
config.model_name_or_path = self.model_args.model_name_or_path
config.problem_type = dataset_classification_type[self.data_args.task_name]
config.negative_sampling = self.model_args.negative_sampling
config.semsup = self.model_args.semsup
config.encoder_model_type = self.model_args.encoder_model_type
config.arch_type = self.model_args.arch_type
config.coil = self.model_args.coil
config.token_dim = self.model_args.token_dim
config.colbert = self.model_args.colbert
label_model, label_tokenizer = getLabelModel(self.data_args, self.model_args)
config.label_hidden_size = label_model.config.hidden_size
model = BertForSemanticEmbedding(config)
model.label_model = label_model
model.label_tokenizer = label_tokenizer
model.config.label2id = {l: i for i, l in enumerate(self.label_list)}
model.config.id2label = {id: label for label, id in config.label2id.items()}
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model.to(device)
model.eval()
torch.set_grad_enabled(False)
model.load_state_dict(torch.load(f'{PROJECT_PATH}/ckpt/Amzn13K/amzn_main_model.bin', map_location = device))
self.model = model
self.extracted_descs = [self.extract_descriptions(adi) for adi in self.all_desc_input_ids_orig]
tot_len = len(self.all_desc_input_ids_orig)
for i in range(len(self.all_desc_input_ids_orig[0])):
for j in range(tot_len):
if self.extracted_descs[j][i] == "":
for k in range(tot_len):
if self.extracted_descs[k][i] != '':
self.extracted_descs[j][i] = self.extracted_descs[k][i]
break
def extract_descriptions(self, input_ids):
descs = self.tokenizer.batch_decode(input_ids, skip_special_tokens = True)
new_descs = []
for desc in descs:
a = desc.find('description is')
if a == -1:
# There is no description to use, lets go with empty
new_descs.append("")
continue
b = min([desc.find(x, a) if desc.find(x, a) !=-1 else 99999999999 for x in ['label is','parents are','children are']])
if b == 99999999999:
new_descs.append(desc[a:].strip())
else:
new_descs.append(desc[a:b].strip())
return new_descs
def classify(self, text, unseen_labels = None):
self.model.eval()
with torch.no_grad():
item = self.tokenizer(text, padding='max_length', max_length=self.data_args.max_seq_length, truncation=True)
item = {k:torch.tensor(v, device = device).unsqueeze(0) for k,v in item.items()}
outputs_doc, logits = self.model.forward_input_encoder(**item)
doc_reps = self.model.tok_proj(outputs_doc.last_hidden_state)
input_ids = torch.tensor([self.coil_cluster_map[str(x.item())] for x in item['input_ids'][0]]).to(device).unsqueeze(0)
all_logits = []
descriptions = []
for adi, ada, alr, ale in zip(self.all_desc_input_ids, self.all_desc_attention_mask, self.all_lab_reps, self.all_label_embeddings):
all_logits.append(coil_fast_eval_forward(input_ids, doc_reps, logits, adi, ada, alr, ale))
final_logits = sum([expit(x.cpu()) for x in all_logits]) / len(all_logits)
max_indices = torch.argmax(torch.stack(all_logits), dim=0).cpu().tolist()
# from pdb import set_trace as bp
# bp()
outs = torch.topk(final_logits, k = 50)
preds_dic = dict()
descs_dic = dict()
for i,v in zip(outs.indices, outs.values):
preds_dic[self.label_list[i]] = v.item()
print(self.extracted_descs[max_indices[i]][i])
descs_dic[self.label_list[i]] = self.extracted_descs[max_indices[i]][i]
return preds_dic, descs_dic
if __name__ == '__main__':
model = DemoModel()
model.classify('Hello') |