File size: 4,962 Bytes
4014562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Some weights of the model checkpoint at prajjwal1/bert-small were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/site-packages/gradio/deprecation.py:43: UserWarning: You have unused kwarg parameters in HighlightedText, please remove them: {'disabled': True}
  warnings.warn(
Exception in thread Thread-166 (handler):
Traceback (most recent call last):
  File "/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/threading.py", line 1009, in _bootstrap_inner
    self.run()
  File "/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/threading.py", line 946, in run
    self._target(*self._args, **self._kwargs)
  File "/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/site-packages/gradio/tunneling.py", line 36, in handler
    data = sock.recv(1024)
ConnectionResetError: [Errno 104] Connection reset by peer
Exception in thread Thread-184 (handler):
Traceback (most recent call last):
  File "/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/threading.py", line 1009, in _bootstrap_inner
    self.run()
  File "/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/threading.py", line 946, in run
    self._target(*self._args, **self._kwargs)
  File "/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/site-packages/gradio/tunneling.py", line 36, in handler
    data = sock.recv(1024)
ConnectionResetError: [Errno 104] Connection reset by peer
Some weights of the model checkpoint at prajjwal1/bert-small were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
/n/fs/nlp-pranjal/miniconda3/envs/rtx/lib/python3.10/site-packages/gradio/deprecation.py:43: UserWarning: You have unused kwarg parameters in HighlightedText, please remove them: {'disabled': True}
  warnings.warn(