File size: 11,744 Bytes
7439e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
<p align="center">
<img src="assets/gfpgan_logo.png" height=130>
</p>
## <div align="center"><b><a href="README.md">English</a> | <a href="README_CN.md">简体中文</a></b></div>
<div align="center">
<!-- <a href="https://twitter.com/_Xintao_" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/17445847/187162058-c764ced6-952f-404b-ac85-ba95cce18e7b.png" width="4%" alt="" />
</a> -->
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
[![PyPI](https://img.shields.io/pypi/v/gfpgan)](https://pypi.org/project/gfpgan/)
[![Open issue](https://img.shields.io/github/issues/TencentARC/GFPGAN)](https://github.com/TencentARC/GFPGAN/issues)
[![Closed issue](https://img.shields.io/github/issues-closed/TencentARC/GFPGAN)](https://github.com/TencentARC/GFPGAN/issues)
[![LICENSE](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE)
[![python lint](https://github.com/TencentARC/GFPGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml)
[![Publish-pip](https://github.com/TencentARC/GFPGAN/actions/workflows/publish-pip.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/publish-pip.yml)
</div>
1. :boom: **Updated** online demo: [![Replicate](https://img.shields.io/static/v1?label=Demo&message=Replicate&color=blue)](https://replicate.com/tencentarc/gfpgan). Here is the [backup](https://replicate.com/xinntao/gfpgan).
1. :boom: **Updated** online demo: [![Huggingface Gradio](https://img.shields.io/static/v1?label=Demo&message=Huggingface%20Gradio&color=orange)](https://huggingface.co/spaces/Xintao/GFPGAN)
1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN <a href="https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>; (Another [Colab Demo](https://colab.research.google.com/drive/1Oa1WwKB4M4l1GmR7CtswDVgOCOeSLChA?usp=sharing) for the original paper model)
<!-- 3. Online demo: [Replicate.ai](https://replicate.com/xinntao/gfpgan) (may need to sign in, return the whole image)
4. Online demo: [Baseten.co](https://app.baseten.co/applications/Q04Lz0d/operator_views/8qZG6Bg) (backed by GPU, returns the whole image)
5. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**. -->
> :rocket: **Thanks for your interest in our work. You may also want to check our new updates on the *tiny models* for *anime images and videos* in [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN/blob/master/docs/anime_video_model.md)** :blush:
GFPGAN aims at developing a **Practical Algorithm for Real-world Face Restoration**.<br>
It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g.*, StyleGAN2) for blind face restoration.
:question: Frequently Asked Questions can be found in [FAQ.md](FAQ.md).
:triangular_flag_on_post: **Updates**
- :white_check_mark: Add [RestoreFormer](https://github.com/wzhouxiff/RestoreFormer) inference codes.
- :white_check_mark: Add [V1.4 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth), which produces slightly more details and better identity than V1.3.
- :white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md)
- :white_check_mark: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/GFPGAN).
- :white_check_mark: Support enhancing non-face regions (background) with [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensions.
- :white_check_mark: We provide an updated model without colorizing faces.
---
If GFPGAN is helpful in your photos/projects, please help to :star: this repo or recommend it to your friends. Thanks:blush:
Other recommended projects:<br>
:arrow_forward: [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN): A practical algorithm for general image restoration<br>
:arrow_forward: [BasicSR](https://github.com/xinntao/BasicSR): An open-source image and video restoration toolbox<br>
:arrow_forward: [facexlib](https://github.com/xinntao/facexlib): A collection that provides useful face-relation functions<br>
:arrow_forward: [HandyView](https://github.com/xinntao/HandyView): A PyQt5-based image viewer that is handy for view and comparison<br>
---
### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior
> [[Paper](https://arxiv.org/abs/2101.04061)]   [[Project Page](https://xinntao.github.io/projects/gfpgan)]   [Demo] <br>
> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) <br>
> Applied Research Center (ARC), Tencent PCG
<p align="center">
<img src="https://xinntao.github.io/projects/GFPGAN_src/gfpgan_teaser.jpg">
</p>
---
## :wrench: Dependencies and Installation
- Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
- [PyTorch >= 1.7](https://pytorch.org/)
- Option: NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads)
- Option: Linux
### Installation
We now provide a *clean* version of GFPGAN, which does not require customized CUDA extensions. <br>
If you want to use the original model in our paper, please see [PaperModel.md](PaperModel.md) for installation.
1. Clone repo
```bash
git clone https://github.com/TencentARC/GFPGAN.git
cd GFPGAN
```
1. Install dependent packages
```bash
# Install basicsr - https://github.com/xinntao/BasicSR
# We use BasicSR for both training and inference
pip install basicsr
# Install facexlib - https://github.com/xinntao/facexlib
# We use face detection and face restoration helper in the facexlib package
pip install facexlib
pip install -r requirements.txt
python setup.py develop
# If you want to enhance the background (non-face) regions with Real-ESRGAN,
# you also need to install the realesrgan package
pip install realesrgan
```
## :zap: Quick Inference
We take the v1.3 version for an example. More models can be found [here](#european_castle-model-zoo).
Download pre-trained models: [GFPGANv1.3.pth](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)
```bash
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P experiments/pretrained_models
```
**Inference!**
```bash
python inference_gfpgan.py -i inputs/whole_imgs -o results -v 1.3 -s 2
```
```console
Usage: python inference_gfpgan.py -i inputs/whole_imgs -o results -v 1.3 -s 2 [options]...
-h show this help
-i input Input image or folder. Default: inputs/whole_imgs
-o output Output folder. Default: results
-v version GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3
-s upscale The final upsampling scale of the image. Default: 2
-bg_upsampler background upsampler. Default: realesrgan
-bg_tile Tile size for background sampler, 0 for no tile during testing. Default: 400
-suffix Suffix of the restored faces
-only_center_face Only restore the center face
-aligned Input are aligned faces
-ext Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
```
If you want to use the original model in our paper, please see [PaperModel.md](PaperModel.md) for installation and inference.
## :european_castle: Model Zoo
| Version | Model Name | Description |
| :---: | :---: | :---: |
| V1.3 | [GFPGANv1.3.pth](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth) | Based on V1.2; **more natural** restoration results; better results on very low-quality / high-quality inputs. |
| V1.2 | [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth) | No colorization; no CUDA extensions are required. Trained with more data with pre-processing. |
| V1 | [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) | The paper model, with colorization. |
The comparisons are in [Comparisons.md](Comparisons.md).
Note that V1.3 is not always better than V1.2. You may need to select different models based on your purpose and inputs.
| Version | Strengths | Weaknesses |
| :---: | :---: | :---: |
|V1.3 | ✓ natural outputs<br> ✓better results on very low-quality inputs <br> ✓ work on relatively high-quality inputs <br>✓ can have repeated (twice) restorations | ✗ not very sharp <br> ✗ have a slight change on identity |
|V1.2 | ✓ sharper output <br> ✓ with beauty makeup | ✗ some outputs are unnatural |
You can find **more models (such as the discriminators)** here: [[Google Drive](https://drive.google.com/drive/folders/17rLiFzcUMoQuhLnptDsKolegHWwJOnHu?usp=sharing)], OR [[Tencent Cloud 腾讯微云](https://share.weiyun.com/ShYoCCoc)]
## :computer: Training
We provide the training codes for GFPGAN (used in our paper). <br>
You could improve it according to your own needs.
**Tips**
1. More high quality faces can improve the restoration quality.
2. You may need to perform some pre-processing, such as beauty makeup.
**Procedures**
(You can try a simple version ( `options/train_gfpgan_v1_simple.yml`) that does not require face component landmarks.)
1. Dataset preparation: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
1. Download pre-trained models and other data. Put them in the `experiments/pretrained_models` folder.
1. [Pre-trained StyleGAN2 model: StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth)
1. [Component locations of FFHQ: FFHQ_eye_mouth_landmarks_512.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/FFHQ_eye_mouth_landmarks_512.pth)
1. [A simple ArcFace model: arcface_resnet18.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/arcface_resnet18.pth)
1. Modify the configuration file `options/train_gfpgan_v1.yml` accordingly.
1. Training
> python -m torch.distributed.launch --nproc_per_node=4 --master_port=22021 gfpgan/train.py -opt options/train_gfpgan_v1.yml --launcher pytorch
## :scroll: License and Acknowledgement
GFPGAN is released under Apache License Version 2.0.
## BibTeX
@InProceedings{wang2021gfpgan,
author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan},
title = {Towards Real-World Blind Face Restoration with Generative Facial Prior},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}
## :e-mail: Contact
If you have any question, please email `xintao.wang@outlook.com` or `xintaowang@tencent.com`.
|