File size: 4,866 Bytes
48ec4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import asyncio
import os
from concurrent.futures import ThreadPoolExecutor
from dotenv import load_dotenv
from sentence_transformers import (
    CrossEncoder,
)  # SentenceTransformer -> model for embeddings, CrossEncoder -> re-ranker
from torch import Tensor
from google import genai
from google.genai import types
from app.core.chunks import Chunk
from app.settings import settings, BASE_DIR, GeminiEmbeddingSettings, logger
import aiofiles.os

load_dotenv()


class Reranker:
    def __init__(self, model: str = "cross-encoder/ms-marco-MiniLM-L6-v2"):
        self.device: str = settings.device
        self.model_name: str = model
        self.model: CrossEncoder = CrossEncoder(model, device=self.device)

    async def rank(self, query: str, chunks: list[Chunk]) -> list[dict[str, int]]:
        return await asyncio.to_thread(self.model.rank, query, [await chunk.get_raw_text() for chunk in chunks])


class GeminiLLM:
    def __init__(self, model="gemini-2.0-flash"):
        self.client = genai.Client(api_key=settings.api_key)
        self.model = model

    async def get_response(self, prompt: str, stream: bool = True, use_default_config: bool = False) -> str:
        path_to_prompt = os.path.join(BASE_DIR, "models_io", "prompt.txt")
        async with aiofiles.open(path_to_prompt, "w", encoding="utf-8", errors="replace") as f:
            await f.write(prompt)

        response = self.client.models.generate_content(
            model=self.model,
            contents=prompt,
            config=(
                types.GenerateContentConfig(**settings.gemini_generation.model_dump())
                if use_default_config
                else None
            ),
        )

        return response.text

    async def get_streaming_response(self, prompt: str, use_default_config: bool = False):
        loop = asyncio.get_event_loop()

        start = loop.time()
        path_to_prompt = os.path.join(BASE_DIR, "models_io", "prompt.txt")
        async with aiofiles.open(path_to_prompt, "w", encoding="utf-8", errors="replace") as f:
            await f.write(prompt)

        await logger.info(f"Time of saving prompt to  document - {loop.time() - start}")

        response = self.client.models.generate_content_stream(
            model=self.model,
            contents=prompt,
            config=(
                types.GenerateContentConfig(**settings.gemini_generation.model_dump())
                if use_default_config
                else None
            ),
        )

        for chunk in response:
            yield chunk


class GeminiEmbed:
    def __init__(self, model="text-embedding-004"):
        self.client = genai.Client(api_key=settings.api_key)
        self.model = model
        self.settings = GeminiEmbeddingSettings()
        self.max_workers = 5
        self.embed_executor = ThreadPoolExecutor(max_workers=self.max_workers)

    def _embed_batch_sync(self, batch: list[str], idx: int) -> dict:
        response = self.client.models.embed_content(
            model=self.model,
            contents=batch,
            config=types.EmbedContentConfig(
                **settings.gemini_embedding.model_dump()
            ),
        ).embeddings
        return {"idx": idx, "embeddings": response}

    async def encode(self, text: str | list[str]) -> list[Tensor]:

        if isinstance(text, str):
            text = [text]

        groups: list[dict] = []
        max_batch_size = 100  # can not be changed due to google restrictions
        batches: list[list[str]] = [
            text[i : i + max_batch_size]
            for i in range(0, len(text), max_batch_size)
        ]

        loop = asyncio.get_running_loop()

        tasks = [
            loop.run_in_executor(
                self.embed_executor,
                self._embed_batch_sync,
                batch,
                idx
            )
            for idx, batch in enumerate(batches)
        ]

        groups = await asyncio.gather(*tasks)

        groups.sort(key=lambda x: x["idx"])

        result: list[float] = []
        for group in groups:
            for vec in group["embeddings"]:
                result.append(vec.values)
        return result

    async def get_vector_dimensionality(self) -> int | None:
        return getattr(self.settings, "output_dimensionality")


class Wrapper:
    def __init__(self, model: str = "gemini-2.0-flash"):
        self.model = model
        self.client = genai.Client(api_key=settings.api_key)

    async def wrap(self, prompt: str) -> str:
        def wrapper(prompt):
            response = self.client.models.generate_content(
                model=self.model,
                contents=prompt,
                config=types.GenerateContentConfig(**settings.gemini_wrapper.model_dump())
            )
            return response.text
        return await asyncio.to_thread(wrapper, prompt)