Spaces:
Runtime error
Runtime error
File size: 5,030 Bytes
baba88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gradio as gr
import whisper
from transformers import pipeline
model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
def analyze_sentiment(text):
results = sentiment_analysis(text)
sentiment_results = {result['label']: result['score'] for result in results}
return sentiment_results
def get_sentiment_emoji(sentiment):
# Define the emojis corresponding to each sentiment
emoji_mapping = {
"disappointment": "😞",
"sadness": "😢",
"annoyance": "😠",
"neutral": "😐",
"disapproval": "👎",
"realization": "😮",
"nervousness": "😬",
"approval": "👍",
"joy": "😄",
"anger": "😡",
"embarrassment": "😳",
"caring": "🤗",
"remorse": "😔",
"disgust": "🤢",
"grief": "😥",
"confusion": "😕",
"relief": "😌",
"desire": "😍",
"admiration": "😌",
"optimism": "😊",
"fear": "😨",
"love": "❤️",
"excitement": "🎉",
"curiosity": "🤔",
"amusement": "😄",
"surprise": "😲",
"gratitude": "🙏",
"pride": "🦁"
}
return emoji_mapping.get(sentiment, "")
def display_sentiment_results(sentiment_results, option):
sentiment_text = ""
for sentiment, score in sentiment_results.items():
emoji = get_sentiment_emoji(sentiment)
if option == "Sentiment Only":
sentiment_text += f"{sentiment} {emoji}\n"
elif option == "Sentiment + Score":
sentiment_text += f"{sentiment} {emoji}: {score}\n"
return sentiment_text
def inference(audio, sentiment_option):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(model, mel, options)
sentiment_results = analyze_sentiment(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
return lang.upper(), result.text, sentiment_output
title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>"""
image_path = "/content/thmbnail.jpg"
description = """
💻 This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br>
📝 For more details, check out the [GitHub repository](https://github.com/openai/whisper).<br><br>
⚙️ Components of the tool:<br>
<br>
- Real-time multilingual speech recognition<br>
- Language identification<br>
- Sentiment analysis of the transcriptions<br>
<br>
🎯 The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br>
✅ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
❓ Use the "Input Audio" option to provide an audio file or use the microphone for real-time speech recognition.<br>
⚡️ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br>
😃 The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
block = gr.Blocks(css=custom_css)
with block:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image(image_path, elem_id="banner-image", show_label=False)
with gr.Column():
gr.HTML(description)
with gr.Group():
with gr.Box():
audio = gr.Audio(
label="Input Audio",
show_label=False,
source="microphone",
type="filepath"
)
sentiment_option = gr.Radio(
choices=["Sentiment Only", "Sentiment + Score"],
label="Select an option",
default="Sentiment Only"
)
btn = gr.Button("Transcribe")
lang_str = gr.Textbox(label="Language")
text = gr.Textbox(label="Transcription")
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output])
gr.HTML('''
<div class="footer">
<p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
</p>
</div>
''')
block.launch()
|